Open Access Open Access  Restricted Access Subscription Access

Evacuated tube collectors in solar DRYERS – A Comprehensive Review

Rohit Pathak, T Ravi Kiran

Abstract


Crops, vegetables, and fruits can have their moisture content reduced using solar dryers. A box that houses the solar dryer is constructed from readily available and inexpensive materials including cement, galvanized iron, brick, and plywood. Solar energy is a non-polluting, cost-free, and abundant renewable energy source, therefore it has several benefits for solar drying. But there are a number of real-world issues that need to be resolved. Previous reviews on solar dryers have been done individually for modeling methods, solar drying innovations, solar drying in greenhouses, the economics of solar drying, the environment's impact on solar drying, and solar systems with latent heat storage. The usage of evacuated tube solar collector in solar dryers is examined in this research

Keywords


solar energy, solar dryer, direct and indirect drying, evacuated tube collectors

Full Text:

PDF

References


S. Tiwari, G. N. Tiwari, and I. M. Al-helal, “Performance analysis of photovoltaic – thermal ( PVT ) mixed mode greenhouse solar dryer,” Sol. ENERGY, vol. 133, pp. 421–428, 2016, doi: 10.1016/j.solener.2016.04.033.

M. Mahrouz, “Drying Characteristics and Kinetics Solar Drying of Moroccan Rosemary Leaves,” Renew. Energy, 2017, doi: 10.1016/j.renene.2017.02.022.

D. K. Rabha and P. Muthukumar, “Performance studies on a forced convection solar dryer integrated with a paraffin wax – based latent heat storage system,” Sol. Energy, vol. 149, pp. 214–226, 2017, doi: 10.1016/j.solener.2017.04.012.

D. K. Rabha, P. Muthukumar, and C. Somayaji, “Energy and exergy analyses of the solar drying processes of ghost chilli pepper and ginger,” Renew. Energy, vol. 105, pp. 764–773, 2017, doi: 10.1016/j.renene.2017.01.007.

S. Tiwari and G. N. Tiwari, “Energy and exergy analysis of a mixed-mode greenhouse-type solar dryer, integrated with partially covered N-PVT air collector,” Energy, 2017, doi: 10.1016/j.energy.2017.04.022.

C. Nicanuru, H. S. Laswai, and D. N. Sila, “Effect of sun- drying on nutrient content of orange fleshed sweet potato tubers in Tanzania,” vol. 4, no. 7, pp. 91–101, 2015.

D. Jain and P. Tewari, “Performance of indirect through pass natural convective solar crop dryer with phase change thermal energy storage,” vol. 80, pp. 244–250, 2015.

D. K. Rabha, P. Muthukumar, and C. Somayaji, “Experimental Investigation of Thin Layer Drying Kinetics of Ghost Chill Pepper (Capsicum Chinense Jacq.) Dried in a Forced Convection Solar Tunnel Dryer,” Renew. Energy, 2016, doi: 10.1016/j.renene.2016.12.091.

A. Elkhadraoui, S. Kooli, I. Hamdi, and A. Farhat, “Experimental investigation and economic evaluation of a new mixed- mode solar greenhouse dryer for drying of red pepper and grape,” Renew. Energy, vol. 77, pp. 1–8, 2015, doi: 10.1016/j.renene.2014.11.090.

S. Dhanushkodi, V. H. Wilson, and K. Sudhakar, “Life Cycle Cost of Solar Biomass Hybrid Dryer Systems for Cashew Drying of Nuts in India,” pp. 22–33, 2015, doi: 10.1515/rtuect-2015-000.

S. Potato et al., “Retention of Provitamin A Carotenoids in Staple Crops Targeted for Biofortification in Africa : Retention of Provitamin A Carotenoids in Staple Crops Targeted for Biofortification in Africa : Cassava , Maize , and Sweet Potato,” vol. 8398, 2015, doi: 10.1080/10408398.2012.724477.

S. Kamiloglu, G. Toydemir, D. Boyacioglu, J. Beekwilder, R. D. Hall, and E. Capanoglu, “A Review on the Effect of Drying on Antioxidant Potential of Fruits and A Review on the Effect of Drying on Antioxidant Potential of Fruits and Vegetables,” no. July 2016, 2015, doi: 10.1080/10408398.2015.1045969.

A. Etem et al., “Accepted Manuscript,” no. June, 2016, doi: 10.1016/j.applthermaleng.2016.06.077.

A. K. Babu, G. Kumaresan, V. A. Aroul, and R. Velraj, “Review of leaf drying : Mechanism and in fl uencing parameters , drying methods , nutrient preservation , and mathematical models,” Renew. Sustain. Energy Rev., vol. 90, no. April, pp. 536–556, 2018, doi: 10.1016/j.rser.2018.04.002.

N. Kumar, “Study on physico-chemical and antioxidant properties of pomegranate peel,” vol. 7, no. 3, pp. 2141–2147, 2018.

B. Woldeyes and B. S. Chandravanshi, “Wet coffee processing waste management practice in ethiopia,” no. May 2015, 2017.

J. Wang et al., “Pulsed vacuum drying enhances drying kinetics and quality of lemon slices,” J. Food Eng., vol. 224, pp. 129–138, 2018, doi: 10.1016/j.jfoodeng.2018.01.002.

Ö. A. Gümüs, “Drying effects on the antioxidant properties of tomatoes and ginger,” vol. 173, pp. 156–162, 2015, doi: 10.1016/j.foodchem.2014.09.162.

R. Khama, “DESIGN AND PERFORMANCE TESTING OF AN INDUSTRIAL-SCALE INDIRECT SOLAR DRYER,” vol. 11, no. 9, pp. 1263–1281, 2016.

A. El Khadraoui, S. Bouadila, S. Kooli, A. Farhat, and A. Guizani, “Thermal behavior of indirect solar dryer: nocturnal usage of solar air collector with PCM,” J. Clean. Prod., 2017, doi: 10.1016/j.jclepro.2017.01.149.

K. Kant, A. Shukla, A. Sharma, A. Kumar, and A. Jain, “SC,” Innov. Food Sci. Emerg. Technol., 2016, doi: 10.1016/j.ifset.2016.01.007.

R. O. Lamidi, L. Jiang, P. B. Pathare, Y. D. Wang, and A. P. Roskilly, Recent advances in sustainable drying of agricultural produce : A review. .

D. V. N. Lakshmi, P. Muthukumar, A. Layek, and P. K. Nayak, “Drying kinetics and quality analysis of black turmeric (Curcuma caesia) drying in a mixed mode forced convection solar dryer integrated with thermal energy storage,” Renew. Energy, 2018, doi: 10.1016/j.renene.2017.12.053.

A. Fudholi, K. Sopian, B. Bakhtyar, M. Gabbasa, M. Yusof, and M. Ha, “Review of solar drying systems with air based solar collectors in Malaysia,” vol. 51, pp. 1191–1204, 2015, doi: 10.1016/j.rser.2015.07.026.

S. Vijayan, T. V Arjunan, and A. Kumar, “SC,” Innov. Food Sci. Emerg. Technol., 2016, doi: 10.1016/j.ifset.2016.05.014.

A. Lingayat, V. P. Chandramohan, and V. R. K. Raju, “Design , Development and Performance of Indirect Type Solar Dryer for Banana Drying,” Energy Procedia, vol. 109, no. November 2016, pp. 409–416, 2017, doi: 10.1016/j.egypro.2017.03.041.

A. A. Mathew and V. Thangavel, “A novel thermal energy storage integrated evacuated tube heat pipe solar dryer for agricultural products: Performance and economic evaluation,” Renew. Energy, vol. 179, pp. 1674–1693, 2021, doi: 10.1016/j.renene.2021.07.029.

P. Singh and M. K. Gaur, “Environmental and economic analysis of novel hybrid active greenhouse solar dryer with evacuated tube solar collector,” Sustain. Energy Technol. Assessments, vol. 47, no. June, p. 101428, 2021, doi: 10.1016/j.seta.2021.101428.

E. Veeramanipriya and A. R. U. Sundari, “Drying Kinetics of Forced Convection Solar Dryer for Fruit Drying,” no. January 2017, 2019.

H. Olfian, S. Soheil, M. Ajarostaghi, and M. Ebrahimnataj, “Development on evacuated tube solar collectors : A review of the last decade results of using nanofluids,” Sol. Energy, vol. 211, no. July, pp. 265–282, 2020, doi: 10.1016/j.solener.2020.09.056.

I. Singh and S. Vardhan, “Jo ur na of,” Renew. Energy, 2020, doi: 10.1016/j.renene.2020.10.114.

G. Saxena and M. K. Gaur, “Exergy analysis of evacuated tube solar collectors : A review Exergy analysis of evacuated tube solar collectors : a review Gaurav Saxena * and Manoj Kumar Gaur,” no. January, 2018, doi: 10.1504/IJEX.2018.088887.

M. J. Muhammad, I. A. Muhammad, N. Azwadi, C. Sidik, M. Noor, and W. Muhammad, “International Communications in Heat and Mass Transfer,” 2016, doi: 10.1016/j.icheatmasstransfer.2016.05.009.

S. B. Sasikumar, H. Santhanam, M. M. Noor, M. Devasenan, and H. M. Ali, “Energy Sources , Part A : Recovery , Utilization , and Environmental Effects Energy Sources , Part A : Recovery , Utilization , and Experimental investigation of parallel type - evacuated tube solar collector using nanofluids Subramaniam Babu Sasikumar , Harikrishnan Santhanam , Muhamad Mat,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 00, no. 00, pp. 1–13, 2020, doi: 10.1080/15567036.2020.1829201.

M. Aramesh and B. Shabani, “On the integration of phase change materials with evacuated tube solar thermal collectors Organic Rankine cycle,” Renew. Sustain. Energy Rev., vol. 132, no. July, p. 110135, 2020, doi: 10.1016/j.rser.2020.110135.

L. Xu, Z. Liu, S. Li, Z. Shao, and N. Xia, “Performance of solar mid-temperature evacuated tube collector for steam generation,” Sol. Energy, vol. 183, no. January, pp. 162–172, 2019, doi: 10.1016/j.solener.2019.03.022.

S. S. Kumar, K. M. Kumar, and S. R. S. Kumar, “ScienceDirect Design of Evacuated Tube Solar Collector with Heat Pipe,” Mater. Today Proc., vol. 4, no. 14, pp. 12641–12646, 2017, doi: 10.1016/j.matpr.2017.10.075.

M. A. Sabiha, R. Saidur, S. Mekhilef, and O. Mahian, “Progress and latest developments of evacuated tube solar collectors,” Renew. Sustain. Energy Rev., vol. 51, pp. 1038–1054, 2015, doi: 10.1016/j.rser.2015.07.016.

M. J. Muhammad, I. A. Muhammad, N. Azwadi, C. Sidik, M. Noor, and W. Muhammad, “International Communications in Heat and Mass Transfer,” 2016, doi: 10.1016/j.icheatmasstransfer.2016.05.009.

A. Sharifian, “Theoretical modelling approaches of heat pipe solar collectors in solar systems : A comprehensive review Theoretical modelling approaches of heat pipe solar collectors in solar systems : A comprehensive review,” no. 2019, pp. 227–243, 2021, doi: 10.1016/j.solener.2019.09.036.

H. Elhage, A. Herez, M. Ramadan, H. Bazzi, and M. Khaled, “An investigation on solar drying : A review with economic and environmental assessment .,” Energy, 2018, doi: 10.1016/j.energy.2018.05.197.

A. I. Bakry, Y. A. F. El-samadony, S. A. El-agouz, A. M. Alshrombably, K. S. Abdelfatah, and M. A. Said, “Performance of the one-ended evacuated tubes as medium temperature solar air heaters at low flow rates,” Sustain. Energy Technol. Assessments, vol. 30, no. October, pp. 174–182, 2018, doi: 10.1016/j.seta.2018.10.002.

M. De Paula, R. Teles, K. A. R. Ismail, and A. Arabkoohsar, “A new version of a low concentration evacuated tube solar collector : Optical and thermal investigation,” Sol. Energy, vol. 180, no. October 2018, pp. 324–339, 2019, doi: 10.1016/j.solener.2019.01.039.

K. Hermsmeyer, K. Miyagawa, S. T. Kelley, A. S. Hall, and M. K. Axthelm, “Reactivity-Based Coronary Vasospasm Independent of Atherosclerosis in Rhesus Monkeys,” vol. 29, no. 3, pp. 671–680, 1997, doi: 10.1016/S0735-1097(96)00524-4.




DOI: https://doi.org/10.37628/ijtea.v8i2.1509

Refbacks

  • There are currently no refbacks.