Thermal Simulation and an Analysis on an Exhaust Gas of a Teg Model using Fluent

Piyush Badelwa, Vikas Kesharwani

Abstract


As the First law of Thermodynamic says “energy is directly proportional to work done” and law of conservation of energy “Energy can neither be created nor can be destroyed, it can only be transformed from one form to another”. Unfortunately any energy policy that produces improvements in the short term is often one that destroys the environment in the long run. It is a universal truth that no exponential growth will last forever. In other words, the global net impacts have heavy consequences on the entire planet’s inhabitants. Here a study of conservation is being followed. (TEG) Thermo-electric generator is an Electro-mechanical device which converts, heat energy into electrical energy. This waste heat if recovered can be used for various other applications. The TEG used in heat power output and system efficiency works as a heat exchanger. Here the device has been engaged into exhaust system for reuse of heat energy for further use of energy in an automobile or a generator. A model is developed in UNIGRAPHICS NX and updated into ANSYS 16.2 software for this purpose. Air is used as a Fluent, having velocity 1 m/s, 2 m/s and 3 m/s. Fluent workbench is being engaged for the summation of results. The parameters are set and are simulated in double precision. The simulation is based on Temperature and thermal heat transfer is studied.

Keywords


Fluent, Thermal, Renewable energy, Efficiency, Heat, Temperature

Full Text:

PDF

References


Poverty E. How to make modern energy access universal. Special early excerpt of the World Energy Outlook. 2010.

Moumouni Y, Ahmad S, Baker RJ. A system dynamics model for energy planning in Niger. Int J Energy Power Eng. 2014;3(6):308-22.

Li W, Zhang Z, Wei M. Forecast on Hebei energy consumption based on system dynamics; 2011 Jul 26-30, Harbin, China, IEEE; 2011.1541-43P.

Koh SL, Lim YS. Meeting energy demand in a developing economy without damaging the environment—A case study in Sabah, Malaysia, from technical, environmental and economic perspectives. Energy Policy. 2010;38(8):4719-28.

Hale JM. Evaluating microgrid effectiveness in transitioning energy portfolios.

Costa PM, Matos MA. Economic analysis of microgrids including reliability aspects; 2006 Jun 11-15; Stockholm, Sweden, IEEE; 1-8p.

Sebitosi AB, Pillay P, Khan MA. An analysis of off grid electrical systems in rural Sub-Saharan Africa. Energy Conversion and Management. 2006;47(9-10):1113-23.

Bobean C, Pavel V. The study and modeling of a thermoelectric generator module. In2013 8TH International symposium on advanced topics in electrical engineering (ATEE).IEEE. 2013:1-4.

Bensaid S, Brignone M, Ziggiotti A, et al. High efficiency Thermo-Electric power generator. International journal of hydrogen energy. 2012;37(2):1385-98.

Hodes M. Optimal pellet geometries for thermoelectric power generation. IEEE Transactions on Components

and Packaging Technologies. 2010;33(2):307-18.

Molina MG, Juanicó LE, Rinalde GF. Design of innovative power conditioning system for the grid integration of thermoelectric generators. International journal of hydrogen energy. 2012;37(13):10057-63.

Cernaianu MO, Gontean A. High-accuracy thermoelectrical module model for energy-harvesting systems. IET Circuits, Devices & Systems. 2013;7(3):114-23.

Chen M, Rosendahl LA, Bach I, Condra T, et al. Transient behavior study of thermoelectric generators through an electro-thermal model using SPICE;2006. 214-19.

Lineykin S, Ben-Yaakov S. Modeling and analysis of thermoelectric modules. IEEE Transactions on Industry Applications. 2007;43(2):505-12.

DOI U. Reclamation: Managing water in the west; Hydroelectric power. 2005.

Tsao J, Lewis N, Crabtree G. Solar faqs. US department of Energy. 2006.

Crabtree GW, Lewis NS. Solar energy conversion. Physics today. 2007;60(3):37-42.

Loh PC, Zhang L, He S, et al. Compact integrated solar energy generation systems. In2010 IEEE Energy Conversion Congress and Exposition. IEEE. 2010:350-356.

Moumouni Y, Baghzouz Y, Boehm RF. Power Smoothing” of a commercial-size photovoltaic system by an energy storage system; 2014 May 25-28;Bucharest, Romania;IEEE,2014.640-644p.

Nuwayhid RY, Shihadeh A, Ghaddar N. Development and testing of a domestic woodstove thermoelectric generator with natural convection cooling. Energy conversion and management. 2005;46(9-10):1631-43.

Leonov V, Torfs T, Fiorini P, et al. Thermoelectric converters of human warmth for self-powered wireless sensor nodes. IEEE Sensors Journal. 2007;7(5):650-7.

Lofy J, Bell LE. Thermoelectrics for environmental control in automobiles; 2002 Aug 29; Long Beach, CA, USA, USA, IEEE; 2002. 471-476p.

Chen L, Cao D, Huang Y, et al. Modeling and power conditioning for thermoelectric generation. 2008 June 15-19; Rhodes, Greece. IEEE; 2008. 1098-1103p.

Ploteau JP, Glouannec P, Noel H. Conception of thermoelectric flux meters for infrared radiation measurements in industrial furnaces. Applied thermal engineering. 2007;27(2-3):674-81.

Matsubara K. Development of a high efficient thermoelectric stack for a waste exhaust heat recovery of vehicles. 2002 Aug 29; Long Beach, CA, USA, USA. IEEE; 2002. 418-423p.

Paradiso JA, Starner T. Energy scavenging for mobile and wireless electronics. IEEE Pervasive computing. 2005;4(1):18-27.

Riffat SB, Ma X. Thermoelectrics: a review of present and potential applications. Applied thermal engineering. 2003;23(8):913-35.

Rowe DM. Thermoelectrics, an environmentally-friendly source of electrical power. Renewable energy. 1999;16(1-4):1251-6.

Rowe DM. Thermoelectric harvesting of low temperature natural/waste heat. AIP. 2012; 1449(1):485-492.

Zheng XF, Liu CX, Yan YY,et al. A review of thermoelectrics research–Recent developments and potentials for sustainable and renewable energy applications. Renewable and Sustainable Energy Reviews. 2014;32:486-503.

Rinalde GF, Juanicó LE, Taglialavore E, et al. Development of thermoelectric generators for electrification of isolated rural homes. International journal of hydrogen energy. 2010;35(11):5818-22.

M. Eswaramoorthy and S. Shanmugam. Techno-economic Analysis of a Solar Thermoelectric Power Generator for a Rural Residential House. 2009;4(10):1911–1919.

Champier D, Bedecarrats JP, Rivaletto M, Theret al. Moelectric power generation from biomass cook stoves. Energy. 2010;35(2):935-42.

Champier D, Bédécarrats JP, Kousksou T, et al. Study of a TE (thermoelectric) generator incorporated in a multifunction wood stove. Energy. 2011;36(3):1518-26.

Cernaianu MO, Gontean A. Parasitic elements modelling in thermoelectric modules. IET Circuits, Devices & Systems. 2013;7(4):177-84.

C. M. University,The Sun & its Energy. http://environ.andrew.cmu.edu/m3/s2/02sun.shtml, 2003. [Online]. Available: http://environ.andrew.cmu.edu/m3/s2/02sun.shtml. [Accessed: 20-Jan-2015].

D. Lashof and S. Yeh. Cleaner and Cheaper: Using the Clean Air Act to Sharply Reduce Carbon Pollution from Existing Power Plants, Delivering Health, Environmental, and Economic Benefits. 2014.

Date A, Date A, Dixon C, et al. Progress of thermoelectric power generation systems: Prospect for small to medium scale power generation. Renewable and Sustainable Energy Reviews. 2014;33:371-81.

Wu KH, Hung CI. Effect of substrate on the spatial resolution of Seebeck coefficient measured on thermoelectric films. International journal of thermal sciences. 2010;49(12):2299-308.

McCarty R. Thermoelectric power generator design for maximum power: it’s all about ZT. Journal of electronic materials. 2013;42(7):1504-8.

Zebarjadi M, Chen G. Recent advances in thermoelectrics. In2011 International Electron Devices Meeting. IEEE. 2011:10-1.

Telkes M. Solar thermoelectric generators. Journal of Applied Physics. 1954;25(6):765-77.

Suleebka KP. High temperature solar thermoelectric generator. Applied Energy. 1979;5(1):53-9.

Rowe DM. A high performance thermoelectric solar powered generator. Appl. Energy. 1981;8:269-73.

Rowe DM, Min G. Evaluation of thermoelectric modules for power generation. Journal of power sources. 1998;73(2):193-8.

Maneewan S, Khedari J, Zeghmati B, et al. Investigation on generated power of thermoelectric roof solar collector. Renewable Energy. 2004;29(5):743-52.

Vatcharasathien N, Hirunlabh J, Khedari J. et al. Design and analysis of solar thermoelectric power generation system. International Journal of Sustainable Energy. 2005;24(3):115-27.

Poudel B, Hao Q, Ma Y. et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science. 2008;320(5876):634-8.

Juanico LE, Rinalde GF. Comparative analysis of photovoltaic and thermoelectric panels for powering isolated homes. Journal of Renewable and Sustainable Energy. 2009;1(4):043107.

Amatya R, Ram RJ. Solar thermoelectric generator for

micropower applications. Journal of electronic materials. 2010;39(9):1735-40.

Zhang Q, Agbossou A, Feng Z. et al. Solar micro-energy harvesting based on thermoelectric and latent heat effects. Part II: Experimental analysis. Sensors and Actuators A: Physical. 2010;163(1):284-90.

Kraemer D, Poudel B, Feng HP. Et al. High-performance flat-panel solar thermoelectric generators with high thermal concentration. Nature materials. 2011;10(7):532-8.

Meng F, Chen L, Sun F. A numerical model and comparative investigation of a thermoelectric generator with multi-irreversibilities. Energy. 2011;36(5):3513-22.

Alaoui C. Peltier thermoelectric modules modeling and evaluation. International Journal of Engineering (IJE). 2011;5(1):114.

Chavez JA, Ortega JA, Salazar J. et al. SPICE model of thermoelectric elements including thermal effects; 2000 May 1-4; Baltimore, MD, USA, USA. IEEE; 2000. 1019-23p.

Lineykin S, Ben-Yaakov S. SPICE compatible equivalent circuit of the energy conversion processes in thermoelectric modules. In2004 23rd IEEE Convention of Electrical and Electronics Engineers in Israel. 2004:346-349.

Lineykin S, Ben-Yaakov S. Modeling and analysis of thermoelectric modules. IEEE Transactions on Industry Applications. 2007;43(2):505-12.

Cernaianu M, Cernaianu A, Cirstea C. et al. Thermo electrical generator improved model. InInt. Conf. Power 2012;13:343-348.

Mihail Cernaianu, “Dissertation TEG modeling in LTspice. 2012.

Mirocha A, Dziurdzia P. Improved electrothermal model of the thermoelectric generator implemented in SPICE; 2008 Sep 14-17; Krakow, Poland. IEEE;2008. 317-20p.

Cernaianu MO, Cirstea C, Gontean A. Thermoelectrical energy harvesting system: Modelling, simulation and implementation. 2012 Nov 15-16; Timisoara, Romania. IEEE; 2012. 67-70p.

Moumouni Y, Baker RJ. Concise thermal to electrical parameters extraction of thermoelectric generator for spice modeling. InMWSCAS 2015:1-4.

Moumouni Y, Baker RJ. Improved SPICE modeling and analysis of a thermoelectric module. In2015 IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS). IEEE. 2015:1-4.

Hensen JL, Nakhi AE. Fourier and Biot numbers and the accuracy of conduction modelling.1994:247-256.

Laprade A, Pearson S, Benczkowski S. et al. Application Note 7532 A New PSPICE Electro-Thermal Subcircuit For Power MOSFETs. Fairchild Semicond. Appl. Note. 2004;7534:1-6.

“http://www.customthermoelectric.com/MaterialProperties.htm,” 2014. [Online]. Available: http://www.customthermoelectric.com/MaterialProperties.htm. [Accessed: 29-Jul-2014].

Gorbachuk NP, Sidorko VR. Heat Capacity and Enthalpy of Bi 2 Si 3 and Bi 2 Te 3 in the Temperature Range 58-1012 K. Powder Metallurgy and Metal Ceramics. 2004;43(5-6):284-90.

“Bismuth telluride Bismuth telluride,” 2014. [Online]. Available:

http://www.chemspider.com/Chemical-Structure.11278988.html. [Accessed: 29-Jul-2014].

Li M, Xu S, Chen Q. et al. Thermoelectric-generator-based dc–dc conversion networks for automotive applications. Journal of electronic materials. 2011;40(5):1136-43.

Moumouni Y, Boehm RF. Utilization of Energy Storage to Buffer PV Output during Cloud Transients. InApplied Mechanics and Materials. Trans Tech Publications Ltd. 2015;705:295-304

Buchmann I. What’s the best battery? 2003.

Morris M, Tosunoglu S. Comparison of rechargeable battery technologies.2012 2-12.

Hadjipaschalis I, Poullikkas A, Efthimiou V. Overview of current and future energy storage technologies for electric power applications. Renewable and sustainable energy reviews. 2009;13(6-7):1513-22.

Chen H, Cong TN, Yang W. et al. Progress in electrical energy storage system: A critical review. Progress in natural science. 2009;19(3):291-312.

Stan AI, Swierczynski M, Stroe DI. et al. A comparative study of lithium ion to lead acid batteries for use in UPS applications; 2014 28 Sep-2 Oct; Vancouver, BC, Canada.IEEE; 2014. 1-8p.

Jaber H, Khaled M, Lemenand T. et al. Effect of exhaust gases temperature on the performance of a hybrid heat recovery system. Energy Procedia. 2017;119:775-82.




DOI: https://doi.org/10.37628/ijicegt.v6i2.1155

Refbacks

  • There are currently no refbacks.