Open Access Open Access  Restricted Access Subscription or Fee Access

Computational Fluent Dynamics Simulation on Thermoelectric Generator using Air as a Flow Medium

Vandana Singh, Vikas Kesharwani

Abstract


Energy play a major role in our life. Everyday a new research comes to recycle the waste energy. In Power plant and automobiles lots of thermal and heat energy get released into atmosphere, which is wasted and generates global warming. To enhance this process and for the utilization of energy, Thermo-electrical devices are used. Thermo-electrical devices utilize the thermal energy of the exhaust thermal energy and converts it into electrical energy, further utilized according to the purpose. So the Exhaust material plays a vital role in Thermo-electrical devices. A study is being carried out for this research. Experimental setup needs lots of money, manpower and time. For the optimization of this process a software simulation is being proposed. Ansys software is adopted for the study. Having velocity of 1 m/s. Ansys Fluent Workbench is suitable for the study. 


Keywords


Thermal devices, Heat Convection, Temperature, Numerical simulation, Thermo- electrical.

Full Text:

PDF

References


Elefsiniotis A, Weiss M, Becker T. et al. Efficient power management for energy-autonomous wireless sensor nodes for aeronautical applications. Journal of electronic materials. 2013;42(7):1907-10.

Elefsiniotis A, Kokorakis N, Becker T. et al. A thermoelectric-based energy harvesting module with extended operational temperature range for powering autonomous wireless sensor nodes in aircraft. Sensors and Actuators A: Physical. 2014;206:159-64.

Patyk A. Thermoelectric generators for efficiency improvement of power generation by motor generators– environmental and economic perspectives. Applied energy. 2013;102:1448-57.

Patyk A. Thermoelectrics: impacts on the environment and sustainability. Journal of electronic materials. 2010;39(9):2023-8.

Knox AR, Buckle J, Siviter J. et al. Megawatt-scale application of thermoelectric devices in thermal power plants. Journal of electronic materials. 2013;42(7):1807-13.

Ismail BI, Ahmed WH. Thermoelectric power generation using waste-heat energy as an alternative green technology. Recent Patents on Electrical & Electronic Engineering (Formerly Recent Patents on Electrical Engineering). 2009;2(1):27-39.

Kinsella CE, O’Shaughnessy SM, Deasy MJ. Et al. Battery charging considerations in small scale electricity generation from a thermoelectric module. Applied Energy. 2014;114:80-90.

Suter C, Jovanovic ZR, Steinfeld A. A 1 kWe thermoelectric stack for geothermal power generation– Modeling and geometrical optimization. Applied energy. 2012;99:379-85.

Yu C, Chau KT. Thermoelectric automotive waste heat energy recovery using maximum power point tracking. Energy Conversion and Management. 2009;50(6): 1506-12.

Cheng CH, Huang SY. Development of a non-uniform-current model for predicting transient thermal behavior of thermoelectric coolers. Applied energy. 2012;100:326-35..

Astrain Ulibarrena D, Martínez Echeverri Á, Rodríguez García A. Improvement of a thermoelectric and vapour compression hybrid refrigerator. Applied Thermal Engineering 39 (2012):140-150.

Champier D, Bédécarrats JP, Kousksou T. et al. Study of a TE (thermoelectric) generator incorporated in a multifunction wood stove. Energy. 2011;36(3):1518-26.

D. Crane, J. LaGrandeur, V. Jovovic, M. et al. TEG On-Vehicle Performance and Model Validation and What It Means for Further TEG Development. Journal of Electronic Materials. 2012.

Tritt TM, Rowe DM. Thermoelectrics handbook: macro to nano.

Rowe DM, Min G. Evaluation of thermoelectric modules for power generation. Journal of power sources. 1998;73(2):193-8.

Rowe DM. Thermoelectric waste heat recovery as a renewable energy source. International Journal of Innovations in Energy Systems and Power. 2006;1(1):13-23.

Rowe DM. Thermoelectrics, an environmentally-friendly source of electrical power. Renewable energy. 1999;16(1-4):1251-6.

Yang D, Yin H. Energy conversion efficiency of a novel hybrid solar system for photovoltaic, thermoelectric, and heat utilization. IEEE Transactions on Energy Conversion. 2011;26(2):662-70.

Carlson EJ, Strunz K, Otis BP. A 20 mV input boost converter with efficient digital control for thermoelectric energy harvesting. IEEE Journal of Solid-State Circuits. 2010;45(4):741-50.

Sandoz-Rosado E, Stevens RJ. Experimental characterization of thermoelectric modules and comparison with theoretical models for power generation. Journal of electronic materials. 2009;38(7): 1239-44.

Liang G, Zhou J, Huang X. Analytical model of parallel thermoelectric generator. Applied Energy. 2011;88(12):5193-9.

Min G, Rowe DM. Experimental evaluation of prototype thermoelectric domestic-refrigerators. Applied Energy. 2006;83(2):133-52.

Min G, Rowe DM. Symbiotic” application of thermoelectric conversion for fluid preheating/power generation. Energy conversion and management. 2002;43(2):221-8.

Rinalde GF, Juanicó LE, Taglialavore E. et al. Development of thermoelectric generators for electrification of isolated rural homes. International journal of hydrogen energy. 2010;35(11): 5818-22.

Kaibe H, Makino K, Kajihara T. et al. Thermoelectric generating system attached to a carburizing furnace at Komatsu Ltd., Awazu Plant. InAIP Conference Proceedings. American Institute of Physics. 2012;1449(1):0524-527.

Nagayoshi H, Kajikawa T. Mismatch power loss reduction on thermoelectric generator systems using maximum power point trackers. 2006 Aug 6-10; Vienna, Austria. IEEE:2006.210-213p.

Nagayoshi H, Tokumisu K, Kajikawa T. Evaluation of multi MPPT thermoelectric generator system. 2007 June 3-7; Jeju Island, South Korea. IEEE:318-321p.

Han HS, Kim YH, Kim SY. et al. Performance measurement and analysis of a thermoelectric power generator. 2010 June 2-5; Las Vegas, NV, USA. IEEE:2010.1-7p.

Takazawa H, Obara H, Okada Y. et al. Efficiency measurement of thermoelectric modules operating in the temperature difference of up to 550K. 2006 Aug 6-10; Vienna, Austria. IEEE:2006.189-192p.

H. Wu, K. Sun, M. Chen. Et al. Evaluation of Power Conditioning Architectures for Energy Production Enhancement in Thermoelectric Generator Systems. Journal of Electronic Materials.2013.

Wu H, Sun K, Chen M. et al. Hybrid centralized-distributed power conditioning system for thermoelectric generator with high energy efficiency. In2013 IEEE Energy Conversion Congress and Exposition. 2013:4659-4664.

Yu H, Li Y, Shang Y. et al. Design and investigation of photovoltaic and thermoelectric hybrid power source for wireless sensor networks; 2008 Jan 6-9; Sanya, China. IEEE. 196-201.

Laird I, Lu DD. High step-up DC/DC topology and MPPT algorithm for use with a thermoelectric generator. IEEE Transactions on Power Electronics. 2012;28(7):3147-57.

Laird I, Lovatt H, Savvides N. et al. Agelidis VG. Comparative study of maximum power point tracking algorithms for thermoelectric generators. 2008 Dec 14-17; Sydney, NSW, Australia.IEEE.1-6p.

Vieira JA, Mota AM. Thermoelectric generator using water gas heater

energy for battery charging. In2009 IEEE Control Applications,(CCA) & Intelligent Control,(ISIC). IEEE. 2009:1477-1482.

J. Bird. Electrical and Electronic Principles and Technology. Routledge. 2010.

Killander A, Bass JC. A stove-top generator for cold areas. In Fifteenth International Conference on Thermoelectrics. Proceedings ICT'96;1996 Mar 26-29; IEEE:390- 393.

Damaschke JM. Design of a low- input-voltage converter for thermoelectric generator. IEEE Transactions on Industry Applications. 1997;33(5):1203-7.

Haidar JG, Ghojel JI. Waste heat recovery from the exhaust of low- power diesel engine using thermoelectric generators;2001 June 8-11; In Proceedings ICT2001. 20 International Beijing, China, China. IEEE. 413-418p.

Kim J, Kim C. A DC–DC boost converter with variation-tolerant MPPT technique and efficient ZCS circuit for thermoelectric energy harvesting applications. IEEE Transactions on Power Electronics. 2012;28(8):3827-33.

Buckle JR, Knox A, Siviter J. et al. Autonomous underwater vehicle thermoelectric power generation. Journal of electronic materials. 2013;42(7):2214-20.

Siviter J, Knox A, Buckle J. et al. Megawatt scale energy recovery in the Rankine cycle. In2012 IEEE Energy Conversion Congress and Exposition (ECCE). IEEE. 2012: 1374-1379.

Fergus JW. Oxide materials for high temperature thermoelectric energy conversion. Journal of the European Ceramic Society. 2012;32(3):525-40.

Xiao J, Yang T, Li P. et al. Thermal design and management for performance optimization of solar thermoelectric generator. Applied Energy. 2012;93:33-8.

Meng JH, Wang XD, Zhang XX. Transient modeling and dynamic characteristics of thermoelectric cooler. Applied energy. 2013; 108:340-8. [46] Jang JY, Tsai YC, Wu CW. A study of 3-D numerical simulation and comparison with experimental results on turbulent flow of venting flue gas using thermoelectric generator modules and plate fin heat sink. Energy. 2013;53:270-81.

Biswas K, He J, Blum ID. et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature. 2012;489(7416):414-8.

Qiu K, Hayden AC. Development of a novel cascading TPV and TE power generation system. Applied Energy. 2012;91(1):304-8.

Sun K, Ni L, Chen M, Wu H, Xing Y, Rosendahl L. Evaluation of high step-up power electronics stages in thermoelectric generator systems. Journal of electronic materials. 2013;42(7):2157-64.

Anatychuk LI, Havrylyuk MV. Procedure and equipment for measuring parameters of thermoelectric generator modules. Journal of electronic materials. 2011;40(5):1292-7.

Chen L, Cao D, Huang Y. et al. Modeling and power conditioning for thermoelectric generation;2008 June 15-19; Rhodes, Greece. IEEE;2008. 1098-1103p.

Anatychuk LI, Kuz RV, Rozver YY. Efficiency of thermoelectric recuperators of the exhaust gas energy of internal combustion engines. InAIP Conference Proceedings. 2012; 1449(1):516-519.

Rauscher L, Fujimoto S, Kaibe HT. et al. Efficiency determination and general characterization of thermoelectric generators using an absolute measurement of the heat flow. Measurement Science and Technology.2005;16(5):1054.

Alata M, Al-Nimr MA, Naji M. Transient behavior of a thermoelectric device under the hyperbolic heat conduction model. International Journal of Thermophysics. 2003;24(6):1753-68.

Brignone M, Ziggiotti A. Impact of novel thermoelectric materials on automotive applications. InAIP Conference Proceedings. 2012; 1449(1): 493-496.

M. Brignone, A. Ziggiotti, P. Repetto,et al. Generator of electric energy based on the thermoelectric e_ect.2008.

Chen M, Lund H, Rosendahl LA.et al. Energy efficiency analysis and impact evaluation of the application of thermoelectric power cycle to today’s CHP systems. Applied Energy. 2010;87(4):1231-8.

Chen M, Rosendahl LA, Condra TJ. et al. Numerical modeling of thermoelectric generators with varing material properties in a circuit simulator. IEEE Transactions on Energy Conversion. 2009;24(1): 112-24. [59] Dalola S, Ferrari M, Ferrari V. et al. Characterization of thermoelectric modules for powering autonomous sensors. IEEE Transactions on Instrumentation and Measurement. 2008;58(1):99-107.

Molina MG, Juanico LE, Rinalde GF.et al. Design of improved controller for thermoelectric generator used in distributed generation. International journal of hydrogen energy. 2010;35(11): 5968-73.

Naji M, Alata M, Al-Nimr MA. Transient behaviour of a thermoelectric device. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy. 2003;217(6):615-21.

Orellana M, Petibon S, Estibals B. et al. Four switch buck-boost converter for photovoltaic dc-dc power applications. 2010 Nov 7-10; Glendale, AZ, USA. IEEE:2010. 469-474.

Vitelli M. On the necessity of joint adoption of both distributed maximum power point tracking and central maximum power point tracking in PV systems. Progress in photovoltaics: research and applications. 2014;22(3):283-99.

Zebarjadi M, Esfarjani K, Dresselhaus MS. et al. Perspectives on thermoelectrics: from fundamentals to device applications. Energy & Environmental Science. 2012;5(1):5147-62.

Fernández-Yañez P, Armas O, Capetillo A. et al. Thermal analysis of a thermoelectric generator for light-duty diesel engines. Applied energy. 2018;226:690-702.

Luo Q, Tang G, Liu Z.et al. A novel water heater integrating thermoelectric heat pump with separating thermosiphon. Applied Thermal Engineering. 2005;25(14- 15):2193-203.

Pilawa-Podgurski RC, Perreault DJ. Submodule integrated distributed maximum power point tracking for solar photovoltaic applications. IEEE Transactions on Power Electronics. 2012;28(6):2957-67.

Decher R. Direct Energy Conversion: fundamentals of electric power production. Oxford University Press on Demand; 1997.

Simons RE, Chu RC. Application of thermoelectric cooling to electronic equipment: a review and analysis. In Sixteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium. IEEE. 2000:1-9.

Mehta RJ, Zhang Y, Karthik C. et al. A new class of doped nanobulk high- figure-of-merit thermoelectrics by scalable bottom-up assembly. Nature materials. 2012;11(3):233-40.

Hester RK, Thornton C, Dhople S. et al. High efficiency wide load range buck/boost/bridge photovoltaic microconverter; 2011 Mar 6-11; Fort Worth, TX, USA. IEEE:2011. 309-313p.

Nuwayhid RY, Shihadeh A, Ghaddar N. Development and testing of a domestic woodstove thermoelectric generator with natural convection cooling. Energy conversion and management. 2005;46(9-10):1631-43. [73] R.-Y. Kim and J.-S. Lai. A Seamless Mode Transfer Maximum Power Point Tracking Controller For Thermoelectric Generator Applications. IEEE Transactions on Power Electronics. 2008;23(5): 2310-18.

Lineykin S, Ben-Yaakov S. Modeling and analysis of thermoelectric modules. IEEE Transactions on Industry Applications. 2007;43(2): 505-12.

O’Shaughnessy SM, Deasy MJ, Kinsella CE. et al. Small scale electricity generation from a portable biomass cookstove: Prototype design and preliminary results. Applied Energy. 2013;102:374-85.

Poshtkouhi S, Palaniappan V, Fard M. et al. A general approach for quantifying the benefit of distributed power electronics for fine grained MPPT in photovoltaic applications using 3-D modeling. IEEE Transactions on Power Electronics. 2011;27(11):4656-66.

Risse S, Zellbeck H. Close-coupled exhaust gas energy recovery in a gasoline engine. MTZ worldwide. 2013;74(1):54-61.

Furue T, Hayashida T, Imaizumi Y. et al. Case study on thermoelectric generation system utilizing the exhaust gas of interal-combustion power plant; 1998 May 28;473-478.

Kyono T, Suzuki RO, Ono K. Conversion of unused heat energy to electricity by means of thermoelectric generation in condenser. IEEE transactions on energy conversion. 2003;18(2):330-4.

WV Sark. Feasibility of photovoltaic Thermoelectric hybrid modules. Applied Energy. 2011;88:2785-90.

Wang W, Cionca V, Wang N et al. Thermoelectric energy harvesting for building energy management wireless sensor networks. International journal of distributed sensor networks. 2013;9(6):232438.

Ramadass YK, Chandrakasan AP. A battery-less thermoelectric energy harvesting interface circuit with 35 mV startup voltage. IEEE Journal of Solid-State Circuits. 2010;46(1): 333-41.

Wang Y, Dai C, Wang S. Theoretical analysis of a thermoelectric generator using exhaust gas of vehicles as heat source. Applied Energy. 2013;112: 1171-80.




DOI: https://doi.org/10.37628/ijcam.v6i2.1157

Refbacks

  • There are currently no refbacks.