Open Access Open Access  Restricted Access Subscription Access

Cyclic Voltammetric Study of Ru Incorporated Copper Oxide Synthesized by Electrodeposition via Nonaqueous Route

B. J. Lokhande, T. S. Ghadge


The consecutive anodization and cathodization techniques were used to prepare ruthenium incorporated copper oxide thin films. The anodization of copper substrate was made to get Cu(OH)2 thin films, at 0.8 V for 10 min by using 1M aqueous sodium hydroxide solution prepared in ethanol as nonaqueous medium. These anodized Cu(OH)2 thin films get cathodized at 0.8 V for 30 min by using 0.005 M ruthenium trichloride solution prepared in propanolic medium to get ruthenium hydroxide incorporated copper hydroxide thin film. These prepared samples get annealed for 1 hour at different temperatures 573 K to 673 K to get ruthenium incorporated copper oxide. Maximum value of the specific capacitance (SC) 4206.66 F/g was achieved for the sample annealed at 573 K using cyclic volatamogram taken at 2 mV/s in 1 M NaOH. XRD reveals the crystalline nature for ruthenium incorporated copper oxide thin films. The rough and granular morphology was examined under SEM observations at various annealing temperatures. Electrochemical study reveals the pseudocapacitive-double layer behavior with optimum SC 4206.66 F/g at the scan rate 2 mV/s in 1 M NaOH.

Full Text:



. B.E. Conway. Electrochemical Supercapacitors Scientific Fundamentals and Technological Applications. New York: Kluwer-Plenum; 1999.

. D. Tashima, M. Otsubo. Relationship between space charge and effective pore size of nanoporous electrode in electric double layer capacitor, Particuology. 2011; 9: 91p.

. B.J. Lokhande, R.C. Ambare, R.S. Mane, S.R. Bhardwaj. C Appl Phys. 2013; 13: 985p.

. A.L.M. Reddy, S. Ramaprabhu. J Phys Chem C. 2007; 111: 7727p.

. M. Ishikawa, M. Morita, M. Ihara, Y. Matsuda. J Electrochemical Soc. 1994; 141: 1730p.

. S.T. Mayer, R.W. Pekala, J.L. Kaschmitter. J Electrochemical Soc. 1993; 140: 446p.

. K.R. Prasad, N. Munichandraian. J Electrochemical Soc. 2002; 149: A1393p.

. S. Mitra, A.K. Shukla, S. Sampath. J Power Sources. 2001; 101: 213p.

. C.C. Hu, Y.H. Huang. J Electrochemical Soc. 1999; 146: 2465p.

. W.C. Chen, C.C. Hu, C.C. Wang, C.K. Min. J Power Sources. 2004; 125: 292p.

. C.C. Wang, C.C. Hu. Carbon. 2005; 43: 1926p.

. J.P. Zheng, P.J. Cygan, T.R. Jow. J Electrochem Soc. 1995; 142: 2699p.

. B.O. Park, C.D. Lokhande, H.S. Park, K.D. Jung, O.S. Joo. Mater Sci. 2004; 39: 4313p.

. K.C. Liu, M.A. Anderson. J Electrochem Soc. 1996; 143: 124p.

. Y.S. Yoon, W.I. Cho, J.H Lim, D.J. Choi, J Power Sources. 2001; 101: 126p.

. D.P. Dubal, D.S. Dhawale, R.R. Salunkhe, V.S. Jamdade, C.D. Lokhande. J Alloys Comp. 2010; 492: 26p.

. V.D. Patake, S.S. Joshi, C.D. Lokhande, O.S. Joo. J Appl Surf Sci. 2009; 255: 4192p.

. N.K. Shrestha, S.J. Yoon, M. Lee, D.Y. Lee, I. Lim, R.S. Mane, M.M. Sung, S.H. Han. Micropo Mesopo Mater. 2011; 144: 200p.

. X. Wu, H. Bai, J. Zhang, F. Chen, G. Shi. J Phys Chem B. 2005; 109: 22836p.

. S.H. Park, H.J. Kim, JAm Chem Soc. 2004; 126: 14368p.

. V.V. Jadhav, D.V. Shinde, S.A. Patil, M.K. Zate, S. Pawar, A.A. Osta, R.S. Mane, S.H. Han. J Nanoengin Nanomanufa. 2014; 4: 1p.

. W.X. Zhang, X.G. Wen, S.H. Yang, Y. Betra, Z.L. Wang. J Adv Mater. 2003; 15.

. X.G. Wen, W.X. Zhang, S.H. Yang. Langmuir. 2003; 19: 5898p.

. J.S. Shaikh, R.C. Pawar, R.S. Devan, Y.R. Ma, P.P. Salvi, S.S. Kolekar, P.S. Patil. J Electrochim Acta. 2011; 56: 2127p.

. V.D. Patake, S.S. Joshi, C.D. Lokhande, O.S. Joo. J Appl Surf Sci. 2009; 255: 4192p.

. V.D. Patake, S.M. Pawar, V.R. Shinde, T.P. Gujar, C.D. Lokhande. J Curr Appl Phys. 2010; 10: 99p.

. M.J. Riezenman. The search for better batteries, IEEE Spectr. 1995; 51.

. B.J. Lokhande, P.S. Patil, M.D. Uplane. J Mater Chem Phys. 2004; 84: 238p.

. B.D. Cullity. Elements of X-Ray Diffraction. 2nd Edn., Massachusetts, USA: Addison-Wesley Publishing Company, Reading; 1978.


  • There are currently no refbacks.