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ABSTRACT 

In this work, analytical solutions of nonlinear heat transfer equation in a convective–radiative 

longitudinal rectangular fin is developed using series expansion integration method. The 

results of the solution of the series expansion integration method are good agreement with the 

numerical solution. With the aid of the analytical solution, the effects of convective and 

radiative heat transfer parameters on the temperature distribution, rate of heat transfer, and 

thermal efficiency of the longitudinal rectangular fin are investigated. From the results, it is 

established that the thermal performance of the fin is greatly enhanced under the combined 

modes of convective and radiative heat transfers. The results obtained in this study serve as 

the basis for determining the level of accuracy of any other approximation method used in the 

analysis of the problem. Also, it could be used to improve the design of convecting–radiating 

fin in heat transfer equipment. 
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INTRODUCTION 

In the design and construction of various 

types of heat transfer equipment and 

components, an array of rectangular fins is 

widely used to enhance heat dissipation 

from a hot primary surface. The 

arrangement is mostly effective in a natural 

convection environment where the 

convection heat transfer coefficient is low. 

In this circumstance, the radiative 

component of heat loss from the fins is 

comparable to the natural convection heat 

loss. Therefore, the fin heat transfer model 

must simultaneously include surface 

convection and radiation [1]. The enormous 

applications of this type of fin have aroused 

interest of various workers as there have 

been extensive works on the heat transfer 

characteristics, which attempt to improve 

the design and provide the optimized mass 

of the fins. In the attempts of studying the 

functions, investigating the heat transfer 

characteristics and optimizing the 

performance of the fin, the fin equation has 

been solved with the aid of numerical 

methods or approximate analytical methods 

as presented in literature, since an 

analytical solution is impossible because of 

the presence of nonlinear terms in the 

governing differential equations [2]. Aziz 

and Benzies [3] presented a double series in 

two perturbation parameters to obtain 
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solution to a convecting–radiating fin with 

temperature-dependent thermal conductivity. 

Nguyen and Aziz [4] analyzed the heat 

transfer from convecting–radiating fins of 

different profile shapes using numerical 

integration techniques. Arslanturk [5] used 

Adomian decomposition method (ADM) to 

evaluate the fin efficiency of a conductive–

convective straight fin with variable 

thermal conductivity, while Hatami et al. 

[6] applied least square method (LSM) and 

fourth-order Runge–Kutta method for the 

analysis of heat transfer and temperature 

distribution in circular convective–

radiative porous fin with different 

geometries. Adomian decomposition 

method and genetic algorithm were used by 

Singla and Das [7] to predict the heat 

generation number and fin tip temperature, 

while Heidarzadeh et al. [8] analyzed the 

temperature distribution of a convective–

radiative fin using ADM. The solution for 

temperature distribution of convective–

radiative fin with nonlinear boundary 

condition was presented by Chiu and Chen 

[9] using ADM. Roy et al. [10] adopted 

ADM for finding the effects of 

environmental temperature and heat 

generation on the temperature distribution 

and efficiency of a convective–radiative fin 

rectangular straight fin with variable 

thermal conductivity. Ganji et al. [11] used 

Galerkin method to solve for the efficiency 

and temperature distribution of conductive, 

convective and radiative straight fins. Aziz 

and Khani [12] studied convection–

radiation of a continuously moving fin of 

variable thermal conductivity. They solved 

this problem using homotopy analysis 

method (HAM) and analyzed the effect of 

several parameters. Miansari et al. [13] 

applied He’s variational iterative method 

(VIM) to analyze temperature distribution 

of a convective–radiative fin and other 

nonlinear equations arising in heat transfer. 

Differential transform method was used in 

solution and the effects of several 

parameters were also studied. Aziz and 

Torabi [14, 15] studied convective–

radiative fin with temperature-dependent 

thermal properties and surface emissivity, 

and also of various profile temperatures. 

Shukla [16] studied the temperature 

distribution in a sublimation-cooled coated 

cylinder in convective and radiative 

environments. Yu and Chen [17] gave 

rigorous formulations using a Taylor 

transformation, and investigated the 

optimal fin length of the convective–

radiative rectangular straight fin with 

variable thermal conductivity. Asadi and 

Khoshkho [18] presented an exact solution 

for the temperature distribution in a 

constant cross-sectional area convecting–

radiating fin using integration techniques. 

Many researchers have studied heat transfer 

of moving convective–radiative fin. Aziz 

and Khani [19] proposed to the HAM with 

20 terms of series to solve heat transfer in 

the moving fin with temperature-dependent 

thermal conductivity and heat losses by 

both convection and radiation. Aziz and 

Lopez [20] used a numerical algorithm built 

into Maple 14 to investigate the thermal 

processing in a continuously moving rod 

with variable thermal conductivity and 

considering both convective and radiative 

heat losses. Torabi et al. [21] developed the 

DTM to solve this kind of problem, while 

Kanth and Kumar [22, 23] adopted the Haar 

wavelet method (HWM). Recently, 

Saedodin and Barforoush [24] applied 

DTM to analyze the thermal processing of 

moving convective–radiative plates with 

temperature-dependent thermal conduc-

tivity, heat transfer coefficient and surface 

emissivity. Torabi et al. [25] utilized DTM 

to develop analytical solution for 

convective-radiative continuously moving 

fin with temperature dependent thermal 

conductivity. Kanth and Kumar [26,27] 

adopted Haar Wavelet Method to analyze a 

continuously moving convective-radiative 

fin with variable thermal conductivity. 

Saedodin and Barforoush [28] presented a 

comprehensive analytical study for 
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convective-radiative continuously moving 

plates with multiple non-linearities.  

 

The heat transfer in convecting–radiating 

fin occurs nonlinearly and as such it is 

difficult to find the exact analytical 

solutions for such problem. Therefore, from 

the reviewed literatures, numerical methods 

or approximate analytical methods were 

applied to solve the problem. However, the 

classical way for finding analytical solution 

is obviously still important since it serves as 

accurate benchmark for numerical 

solutions. The experimental data are useful 

to access the mathematical models, but are 

never sufficient to verify the numerical 

solutions of the established mathematical 

models. Comparison between the 

numerical calculations and experimental 

data fails to reveal the compensation of 

modeling deficiencies through the 

computational errors or unconscious 

approximations in establishing applicable 

numerical schemes. Additionally, 

analytical solutions for specified problems 

are also essential for the development of 

efficient applied numerical simulation 

tools. Also, in practice, approximate 

analytical solutions with large number of 

terms are not convenient for use by 

designers and engineers. Inevitably, 

analytical expressions are required to 

determine the fin temperature distribution, 

efficiency, effectiveness and the optimum 

parameter. Analytical solutions, when 

available, are advantageous in that they 

provide a good insight into the significance 

of various system parameters affecting the 

transport phenomena. Also, analytical 

expression is more convenient for 

engineering calculation compared with 

experimental or numerical studies, and it is 

obvious starting point for a better 

understanding of the relationship between 

physical quantities/properties. Analytical 

solution provides continuous physical 

insights than pure numerical/computation 

method. It helps to reduce the computation 

cost and task in the analysis of such 

problem. Also, it is convenient for 

parametric studies and accounting for the 

physics of the problem. It appears more 

appealing than the numerical solution. 

Therefore, in this work, a series expansion 

integration method applied to provide 

analytical solution for the nonlinear 

differential equations without linearization, 

discretization or perturbation. The method 

shows to be advantageous over pure 

numerical schemes since no discretization 

is needed and over the known approximate 

analytical methods for solving nonlinear 

differential equation since it requires no 

approximation, linearization restrictive 

assumptions or perturbation, complexity of 

expansion of derivatives, and computation 

of derivatives symbolically. It greatly 

reduced the size of computational work 

while still accurately providing the series 

solution with fast convergence rate. Unlike 

most numerical techniques, it provides a 

closed-form solution. It provides good 

results to the solution of nonlinear equation 

with high accuracy. The method does not 

require many computations as carried out in 

DTM, HPM, HAM, ADM and VIM to have 

high and fast rate of convergence. 

 

FORMULATION OF THE PROBLEM 

Consider a straight fin of rectangular profile 

(Figure 1) with a cross-sectional area A, 

length L, constant thermal conductivity k, 

and surface emissivity ε, exposed to an 

environment. The fin is attached to a 

primary surface at fixed and uniform 

temperature Tb. The primary surface 

temperature is greater than the ambient 

temperature, so that the heat is dissipated 

from the fin surface by simultaneous 

convection and radiation through its 

surfaces to the surrounding medium. The 

sink (the medium surrounding the fin) 

temperatures for convection and radiation 

are uniform and they are Tc and Tr, 
respectively. Assuming the heat flow in the 

fin and its temperatures remain constant 
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with time, the convective heat transfer 

coefficient (h) on the faces of the fin is 

constant and uniform over the entire surface 

of the fin, the fin thickness is small, 

compared with its height and length, so that 

temperature gradients across the fin 

thickness and heat transfer from the edges 

of the fin may be neglected, no contact 

resistance where the base of the fin joins the 

prime surface, no heat sources within the 

fin itself and the heat transfer to or from the 

fin is proportional to the temperature excess 

between the fin and the surrounding 

medium, the thermal energy balance on 

volume element can be expressed as 

follows: 

 
Fig. 1. The geometry of straight 

rectangular convective–radiative fin. 

 

Rate of heat conduction into the element at 

x = Rate of heat conduction from the 

element at x+dx 

+ Rate of heat convection from the element  

(1) 

+ Rate of heat radiation from the element 

 

Mathematically, the thermal energy 

balance could be expressed as follows: 

𝑄𝑥 = 𝑄𝑥+𝑑𝑥 +𝑄𝑐𝑜𝑛𝑣. +𝑄𝑟𝑎𝑑.(2) 

i.e., 

𝑄𝑥 − 𝑄𝑥+𝑑𝑥 = 𝑄𝑐𝑜𝑛𝑣. +𝑄𝑟𝑎𝑑.    (3) 

𝑄𝑥 − (𝑄𝑥 +
𝛿𝑞

𝛿𝑥
𝑑𝑥)

= ℎ𝑃(𝑇 − 𝑇𝑐)𝑑𝑥
+ 𝜎𝜖𝑃(𝑇4 − 𝑇𝑟

4)𝑑𝑥 

As dx→0, Equation (3) reduces to Equation 

(4): 

 (4) 

 

From Fourier’s law of heat conduction, 

 (5) 

 

Substituting Equation (5) into Equation (4), 

the following equation was obtained: 

(6) 

 

Following the assumptions that the cross-

sectional area, Acr, and the constant thermal 

conductivity k, are constant, Equation (6) 

results into 

 (7) 

 

Dividing Equation (7) through by kAcr, then 

the governing differential equation for the 

convecting–radiating fin, as given by 

Equation (8), arrived at 

 
(8) 

 

while the boundary conditions are 

 (9) 

 
 

If negligible heat loss at the tip of the fin is 

considered, then boundary conditions are 

  (10) 
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Applying the following dimensionless parameters,  

 

 (11) 

 

Equations (12) and (13) were obtained: 

 

 (12) 

The boundary conditions are 

 

 (13) 

It is very important to point out that the thermo-geometric parameter or the fin convective 

performance factor, Mc, could be written in terms of Biot number, Bi, and the aspect ratio, ar, 

as follows: 

 
22 2 2

2 2

2

(2 ) 2 2
2

( )

,

b b b b
c r

c a a a a

b
r

a

Ph L L h L h L h L
M Bia

A k L k k k

h L
where Bi a

k

 

  





 
= = = = = 

 

= =

  (14) 

 

From Equation (14), it implies that BiaM rc 22 =  

 

Where Bi is the Biot number = (heat transfer by convection)/ (heat transfer by conduction) 
2

2 3

c

r

M h

M T



= = = Stanton number/Thring number = (heat transfer by convection)/ (heat 

transfer by radiation)  

 

Ω= Bi / γ= (heat transfer by radiation) / (heat transfer by conduction) 

 

ANALYTICAL SOLUTION BY SERIES EXPANSION INTEGRATION METHOD 

On multiplying Equation (8) through by  and then integrate, Equation (15) is obtained: 

  (15) 

 

Applying the fin tip boundary condition in Equation (10), i.e., 
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Equation (15) gives Equation (16): 

  (16) 

 

From Equation (16), it can be easily shown that  

( )
0.5

2 2 22 2
5 2 2 2 4 2 5 2 42

5 2 2 5

c c tr r
c c r r c t c t r r t

M MM M
X M M M M d


          

−

  
= − + − + − − + −  

  
      (17) 

 

Since θ decreases as x increases, the minus sign is used when taking the square root. 

 

Integrating Equation (17) by series expansion up to the sixth term gives 
3 2 5

6

4 3 5

2 4 2
5

2 4 30.5
5 2

1
3 2

2
4 3

2 3 2

2

1 35 15 63

6 32 16 256 2

1 3 35 15

1 5 8 128 16
2

1 3 5 1 3

4 4 16 3 8 2

4

BC B C C A

D D D D

B C BC

D D D
X A B C D d

BC C C BD

D D D D

C

D





    

 

 

−

  
− − −  

  
  
 + + − 

−    = − + + + = +   
    + − + −    
   

 
 
− +  


      (18) 

where 

25
)(

25

22
42

52
2422

22

tc
trr

tr
tccrrcc

cr M
M

M
MDMMC

M
B

M
A





 −+−=+−===

 
And 𝜓 is an arbitrary constant 

 

Thus, the LHS of Equation (18) could be written as  

 ++++++= 6

6

5

5

4

4

3

3

2

212X   (19) 

where 

𝛽1 =
−1

𝐷
1

2

  𝛽2 =
𝐶

4𝐷
3

2

  𝛽3 =
−1

3𝐷
1

2

(
3𝐶2

8𝐷2
−

𝐵

2𝐷
)   𝛽4 =

−1

4𝐷
1

2

(
3𝐵𝐶

4𝐷2
−

5𝐶3

16𝐷3
) 

𝛽5 =
−1

5𝐷
1

2

(
3𝐵2

8𝐷2
+

35𝐶4

128𝐷4
−
15𝐵𝐶2

16𝐷3
)   𝛽6 =

−1

6𝐷
1

2

(
35𝐵𝐶3

32𝐷4
−
15𝐵2𝐶

16𝐷3
−

63𝐶5

256𝐷5
−

𝐴

2𝐷
) 

 

Using the first boundary condition in Equation (19), the arbitrary constant gives  

( )654321  +++++−=   (20) 

 

On substituting Equation (20) into Equation (19), Equation (21) was arrived at 

( ) ( ) ( ) ( ) ( ) ( )1111112 6

6

5

5

4

4

3

3

2

21 −+−+−+−+−+−= X   (21) 

 

Equation (19) or Equation (21) could be written as follows: 
6

6

5

5

4

4

3

3

2

212  +++++=−X  (22) 
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where the arbitrary constant   is given by Equation (20). 

 

Then, by reversion of power series, Equation (22) can be written as follows: 
6
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
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ANALYSIS OF FIN PERFORMANCE INDICATORS 

In order to evaluate the performance of the fin based on engineering parameters of interests, 

the total surface heat loss and efficiency of the fin are analyzed. 

 

Total Surface Heat Loss 

The instantaneous total surface heat loss is the sum of convective and radiative losses as given 

by Equation (22): 

  −+−= 

L

sactual TTPTThpQ
0

44 )()(    (24) 

 

The ideal fin heat transfer is the heat transfer from the fin when the entire fin surface was at 

the base temperature. Thus, the idea heat transfer from the fin is given as 
4 4( ) ( )ideal b b sQ hPL T T PL T T= − +  −

    
   (25) 

 

The Fin Efficiency 

The efficiency of thee fin is given as 

( )

( ) )(

)]([
44

441

0

max sbcb

scf

TTPLTTPhL

dxTTPTTPh

Q

Q

−+−

−+−
==






  (26) 

 

The dimensionless for of Equation (26) is given  
1 1

2 2 4 4 4 4

0 0

2 2 4 4
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where  
2

2 3

c

r

M h

M T



= =  



 

 

Analytical Solution for Nonlinear Convective–radiative Heat Transfer                                         Sobamowo et al. 

 

 

IJTEA (2019) 1–14 © JournalsPub 2019. All Rights Reserved                                                                    Page 8 

RESULTS AND DISCUSSION 

The results of the developed approximant 

analytical solutions and the parametric 

studies are given as Figures 2–8. The 

influences of convective and radiative heat 

transfer on the fin are shown in Figure 2. It 

is depicted in the figure that the thermal 

performance of the fin is enhanced under 

the combined modes of convective and 

radiative heat transfer. However, the 

radiative heat transfer can be neglected if 

the base temperature of the fin is low and 

the emissivity of the fin surface is near zero. 

The important thing for the considerations 

of radiative heat transfer in fins surface is 

the emissive because high emissivity gives 

a great amount of heat radiation transfer 

from the fin. 

 

The impacts of convective and radiative 

heat transfer parameters on the temperature 

distribution in the fin are shown in Figures 

3 and 4, respectively. It is shown that the 

dimensionless temperature distribution 

falls monotonically along fin length for all 

various convective and radiative heat 

transfer parameters. For larger values of the 

convective and radiative heat transfer 

parameters, the large amount of heat is 

convected or radiated from the fin through 

its length to environment. In the situation of 

negligible heat loss from the fin tip 

(insulated tip) to the environment, the fin 

temperature decreases along the fin length, 

the temperature decreasing rate is the same 

around the fin base area. Also, it is shown 

that the temperature profiles for the various 

convective and radiative heat transfer 

parameters coincide initially at the base of 

the fin but part away toward the tip of the 

fin. This is due to the fact that convective 

and radiative heat transfer parameters are 

factors/multipliers of the temperature 

difference between the fin surface and 

surrounding medium (T–T∞). Such 

temperature difference between the fin 

surface and the surrounding decreases from 

the fin base to the fin tip irrespective of the 

increase value of the convective heat 

transfer parameter. 

 

 
Fig. 2. Effects of heat transfer mode on the thermal performance of the fin. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
im

e
n
s
io

n
le

s
s
 t

e
m

p
e
ra

tu
re

, 

 

Dimensionless lenght, X

 

 
Radiating fin

Convecting fin

Convecting-radiating fin



 

 

 

 

 

IJTEA (2019) 1–14 © JournalsPub 2019. All Rights Reserved                                                                    Page 9 

International Journal of Thermal Energy and Applications 
 

Vol. 1: Issue 2 

www.journalspub.com 

 

 

 
Fig. 3. Effects of convective parameter on the thermal performance of the fin. 

 

 
Fig. 4. Effects of radiative parameter on the thermal performance of the fin. 

 

Figure 5 shows the effects of convective–

radiative parameter ((heat transfer by 

convection) / (heat transfer by radiation)) 

on the temperature distribution in the fin. It 

is shown in the figure that temperature 

distribution in the fin decreases as the 

convective–radiative parameter increases. 
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of heat transfer at the base of the fin. Figure 

6 shows the effects of convective–radiative 

parameter on the dimensionless heat 

transfer rate along the fin. Also, the figure 

depicts the variation of the rate of heat 

transfer with the fin length. From the figure, 

it could be deducted that the convective–

radiative parameter, which is a function of 

the thermal conductivity, heat transfer 

coefficient and emissivity of the fin, has 

direct and significant effects on the rate of 

heat transfer along and at the base of the fin.

 

 
Fig. 5. Effects of convective-radiative parameter on the thermal performance of the fin. 

 

 
Fig. 6. Effects of convective–radiative parameter on the heat transfer rate of the fin. 
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Figures 7 and 8 show the effects of 

convective and radiative heat transfer on 

the efficiency of the fin. It is shown from 

the results that the fin efficiency decreases 

monotonically with increasing convective 

heat transfer parameter. From the figures, it 

is shown that as the convective heat transfer 

parameter increases, the efficiency of the 

fin decreases. When the convective heat 

transfer parameter equals to zero, the fin 

efficiency is 100%, which implies that there 

is no conduction resistance or no presence 

 
Fig. 7. Effects of convective–radiative parameter on the thermal efficiency of the fin. 

 

 
Fig. 8. Effects of convective–radiative parameter on the thermal efficiency of the fin. 
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Fig. 9. Comparison of the series expansion integration method and numerical solutions. 

 
of fin at all. As the convective heat transfer 
parameter (ratio of the convective heat 
transfer coefficient to thermal conductivity) 
approaches zero, the temperature at every 
point in the fin is equal to the temperature 
of the base. The inverse variation in the fin 
efficiency with the convective heat transfer 
or thermo-geometric parameter is due to the 
fact that as more materials are attached to 
the prime surface, the resistance to heat 
flow increases thereby reducing the fin 
efficiency. Upon further increase in the fin 
thermo-geometric parameter, the effect of 
reducing the resistance becomes visible in 
the sense that the fin efficiency starts to 
normalize. Therefore, high efficiency of the 
fin could be achieved by using small values 
of thermo-geometric parameter, which 
could be realized using a fin of small length 
or by using a material of better thermal 
conductivity. 
 
The approximate analytical method of 
solution is verified with numerical solution 
using fourth-order Runge–Kutta as shown 
in Figure 9. From the results, it is depicted 
that the series expansion integration 
method displays good agreement with the 

numerical solution. This fact establishes the 
high accuracy of the method. Therefore, the 
application of the method to other nonlinear 
differential equation is recommended. 
 
NOMENCLATURE 
A cross-sectional area of the fins, m2 

Bi Biot number 
h heat transfer coefficient, Wm-2k-1 
k thermal conductivity of the fin, Wm-1k-1 
L length of the fin, m  
Mc dimensionless fin convective heat 

transfer parameter 
Mr dimensionless fin radiative heat 

transfer parameter 
m2 fin parameter m-1 
P perimeter of the fin, m  
T temperature, K 
x axial distance, m 
X dimensionless length  
Q  dimensionless heat transfer 
η efficiency of the fin 
 

Greek Symbols 

δ thickness of the fin, m 
ε efficiency of the fin  
ϵ emissivity of the fin material 
θ dimensionless temperature 
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σ Stefan–Boltzmann constant 
δ fin thickness  
 

Subscript 

b base 
c convective 

r radiative 
t tip 
 
CONCLUSION 

In this work, series expansion integration 
method is used to solve the nonlinear 
thermal model of convective–radiative 

cooling fins. It was shown that the series 
expansion integration method displays 
good agreement with the numerical 

solution. From the parametric studies, it 
was established that the thermal 
performance of the fin is enhanced under 
the combined modes of convective and 

radiative heat transfer. Aside from the fact 
that the application of the method to other 
nonlinear differential equation is 

recommended, the results obtained in this 
study serve as the basis for determining the 
level of accuracy of any other 

approximation methods. 
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