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ABSTRACT 

In this paper, the flow of a micropolar fluid conveyed through porous channel driven by 

suction or injection with high mass transfer is analyzed using the regular perturbation 

method to solve the coupled nonlinear ordinary equations arising from the mechanics of 

fluid. The developed analytical solutions are used to investigate the effects of flow and 

rotation parameters such as Reynolds number and microrotation parameters. The obtained 

analytical results when compared to results of the other methods in the existing works in 

literature are in good agreements. The results obtained from this paper can be used to further 

the study of the behavior of micropolar fluids in applications including as lubricants, blood 

flow, porous media, microchannels and flow in capillaries. 
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INTRODUCTION 

The theory of micropolar fluid was 

established by Eringen [1] in his bid to 

model the behavior of non-Newtonian 

flow whose microconstituents rotate 

during fluid flow. Moreover, in his work, 

he developed the constitutive relation to 

include more material parameters and 

microrotation vectors making the usual 

equations for Newtonian flow nonlinear. 

Also, in the study of micropolar fluids, 

Idris [2] studied the effect of non-uniform 

temperature gradient on micropolar fluids 

under convective heat transfer, while Yuan 

[3] investigated the behavior of micropolar 

fluids under laminar flow condition within 

a porous channel. Kelson [4, 5] presented 

the effect of surface conditions on 

micropolar fluid flow over a stretching 

sheet with strong suction and injection. 

The flow of viscous fluid was studied by 

Zaturska et al. [6] along a porous wall 

during suction. Power-law variations were 

adopted by Cheng [7] to study micropolar 

fluid from a vertical truncated cone under 

natural convection. Joneidi et al. [8] 

applied the differential transformation 

method (DTM) to heat transfer problems 

of nonlinear equations, while Hassan [9] 

adopted the DTM in solving eigenvalue 

problems. Magyari and Keller [10] studied 

boundary layer flows induced by 

permeable walls using exact solutions. 

Natural convective flow over horizontal 
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plate was investigated by Murthy and 

Singh [11] presenting the thermal effects 

with surface mass flux on convection. 

 

The relevance and importance of 

pertubation solutions to provide 

approximate analytical solutions have been 

proven beyond reasonable doubt in 

literature. However, owing to the problem 

of weak nonlinearites and small 

parameters, which are sometimes artificial, 

makes it necessarily to develop other 

analytical methods of solutions to 

overcome these limits [12–26]. 

Consequently, the use of other 

approximate analytical methods such as 

DTM, Homotopy Analysis Method 

(HAM), Optimal Homotopy Asymptotic 

method (OHAM), Variational Iteration 

method (VIM), Adomian Decomposition 

method (ADM) and some other 

approximation methods have been 

developed. Methods such as DTM, HAM 

and ADM, however, require the need to 

find an initial condition that will satisfy the 

boundary condition which theories have 

not been rigorously proven for all cases, 

making it necessary to use computational 

tools resulting to higher computational 

cost to provide problem solutions. Also, 

OHAM requires determining constants 

using auxilliary fuctions which may be too 

rigorous to determine for some nonlinear 

problems. Since the solutions reported for 

the other relatively sophisticated methods 

to nonlinear problems have good accuracy, 

but they are more complicated for 

applications than perturbation methods. 

Therefore, over the years, the relative 

simplicity and high accuracy, especially in 

the limit of small parameter, have made 

perturbation method an interesting tool 

among the most frequently used 

approximate analytical methods [27–30]. 

Therefore, in this paper, the flow and 

rotation of micropolar fluids transported 

through porous channels with high mass 

transfer are studied using the regular 

perturbation method. The effect of 

material and microrotation constituent on 

the flow process is investigated.  

 

MODEL DEVELOPMENT AND 

ANALYTICAL SOLUTION 

Consider the laminar, incompressible and 

isothermal flow of a micropolar fluid 

through a channel with porous walls 

where fluid undergoes suction or 

injection with speed q. The channel wall 

is parallel to the x-axis as described 

using Cartesian coordinate with a width 

of distance 2h and located at a reference 

y h=  . The formulation of the model 

development of the micropolar fluid is 

developed with respect to the above 

conditions following the assumptions 

that the fluid is incompressible, flow is 

steady and laminar. Also, radiation heat 

transfer is negligible. 

 

Following the assumptions, the governing 

equations of the channel flow are given as 
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The governing equations expressed in 

Equations (1)–(4) include microrotation or 

angular velocity and material parameters 

whose direction is in the xy-plane 

consistent with other micropolar fluid 

studies. In this study, material parameters 

are taken as independent and constant.  

 

( , ) 0, ( , ) ,

( , h) s
x h

u x h v x h q

u
N x

y
=

 =  = 


 = −

           (5)

 

 

Fluid flow is assumed symmetric about y = 

0. 

( ,0) ( ,0) 0
u

x v x
y


= =

                      (6) 

 

The value of s depicts various flow 

situations of the micropolar fluid. When s 

= 0, the microelement close to the porous 

wall surface is unable to rotate, while 

when s = 0.5, the microrotation is the same 

as the fluid vorticity at the boundary. 

Similarly, fluid injected or removed from 

the stream is depicted by the value of q. 

Given that suction is the condition when q 

> 0 and injection is the situation when q < 

0. The governing equation is, therefore, 

simplified by including micropolar effects 

by assuming stream functions and 

micropolar to the Berman’s similarity 

solution [26]: 
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Dimensionless micropolar parameters and 

non-zero crossflow Reynolds number are 

introduced as  

1 2 2

3 2

, ,

,Re
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With the aid of Equations (7)–(10), 

Equations (1)–(4) may be reduced to 

ordinary nonlinear differential equations as 

stated below: 
4 2
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With the appropriate boundary conditions 

defined as 
'

''

( 1) 1, ( 1) 0,

( 1) ( 1)

F F

G sF

 =  =

 = 
                        

(13)
 

 

Symmetry of fluid flow through the porous 

channel is assumed, therefore, boundary 

condition takes the following form: 
'' '

''

(0) (0) (1) 0,

(1) 1, (1) (1)

F F F

F G sF

= = =

= =
                

(14)
 

 

The regular pertubation method, which is 

an analytical scheme for providing 

approximate solutions to the ordinary 

differential equations, is adopted in 

generating solutions to the coupled 

ordinary nonlinear differential equation. 

The flow and rotation series solution, 

where ε is the small pertubation parameter, 

may be presented in the following form: 
2 3

0 1 2 ( )F F F F O  = + + +
         

(15) 

2 3

0 1 2 ( )G G G G O  = + + +
         (16) 
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Substituting Equations (15) and (16) into 

(11) and selecting at the the terms of the 

same orders yields 
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Substituting Equations (15) and (16) into 

(12) and selecting at the various orders 

yields 
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The boundary conditions for the leading 

order equation is given as 
'' '

0 0 0

0 0 0
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With the aid of the boundary conditions, 

Equation (23), it could be expressed easily 

that Equations (17) and (20) can be shown 

as follows: 
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Equations (24), (27)and (30) are 

substituted back into the series solution, 

Equation (15). The flow profile solution is 

expressed in its final form as 
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With the aid of the boundary conditions in 

Equation (26),  the solutions of Equations 

(18) and (21) can be shown as  
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Using the boundary conditions in Equation 

(29), it can be easily shown that the 

solutions of Equations (19) and (22) are  
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Substituting Equations (24), (27) and (30) 

into the series solution equation (15). The 

rotation profile solution is expressed in its 

final form as 

( )( ) ( ) ( )( )2
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Also, after substituting Equations (25), 

(28) and (31) into the series solution 

equation (16). The rotation profile solution 

is expressed in its final form as 
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(33) 

RESULTS AND DISCUSSION 

The result obtained from the analytical 

solutions is discussed here, where the 

effect of parameters on flow and rotation is 

reported graphically. The effect of 

micropolar fluid parameters at various 

values on the velocity and rotation profile 

is presented. Figure 1 shows the effect of 

the Reynolds number (Re) on velocity 

profile. It can be depicted that the velocity 

distribution decreases as Re increases 

when fluid is undergoing suction, and 

during injection, the velocity profile 

increases for increasing values of Re 

(Table 1). 

 

Figure 2 shows the effect of microrotation 

parameter (N1). From the figure, increasing 

values of N1 parameter decreases the 

velocity profile slightly, which is as a 

result of an increase in rate of shear at the 

wall causing a decrease in boundary layer 

thickness. Effect of the microrotation 

parameter (N2) on the velocity profile is 

depicted in Figure 3. The result shows a 

slight increase in velocity distribution at 

increasing values of N2 parameter due to 

increase in momentum boundary layer 

thickness near the porous wall. 

 

Table 1. Comparison of numerical and 

regular perturbation solution when N1 = 

N2 = 1, N3 = 0.1 and Re = −1. 
G(η) 

η NM 

[13] 

Present work NM 

[13] 

Present work 

0 0.0000 0.0000 0.0000 0.0000 

0.05 0.0752 0.0749 -0.0202 -0.0214 

0.1 0.1500 0.1495 -0.0401 -0.0424 

0.15 0.2240 0.2232 -0.0595 -0.0629 

0.2 0.2969 0.2959 -0.0780 -0.0824 

0.25 0.3683 0.3671 -0.0954 -0.1006 

0.3 0.4378 0.4365 -0.1113 -0.1172 

0.35 0.5051 0.5035 -0.1256 -0.1319 

0.4 0.5696 0.5680 -0.1378 -0.1445 

0.45 0.6311 0.6295 -0.1477 -0.1544 

0.5 0.6892 0.6876 -0.1550 -0.1615 

0.55 0.7435 0.7420 -0.1592 -0.1654 

0.6 0.7937 0.7922 -0.1601 -0.1658 

0.65 0.8392 0.8379 -0.1572 -0.1623 

0.7 0.8798 0.8787 -0.1503 -0.1545 

0.75 0.9152 0.9143 -0.1388 -0.1423 

0.8 0.9448 0.9442 -0.1225 -0.1251 

0.85 0.9685 0.9681 -0.1009 -0.1027 

0.9 0.9858 0.9856 -0.0736 -0.0746 

0.95 0.9964 0.9963 -0.0401 -0.0405 

1.00 1.0000 1.0000 0.0000 0.0000 

 

Figure 4 shows the effect of Reynolds 

number (Re) on rotation profile. It could be 

seen from the figure that, at increasing 

values of Re, rotation distribution decreases 

up till point η = 0.6 (not accurately 

determined) for suction, thereafter rotation 

distribution increases for increasing values 

of Re during injection. This can be 

physically explained that, at increasing Re, 

the minimum point of micropolar fluid 

rotation is still retained at the origin. As 

microrotation parameter N1 increases for 

suction flow, the rotation profile decreases 

till η = 0.56 (not accurately determined), 
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then the reverse is the case for injection as 

depicted in Figure 5, illustrating there is an 

increase from suction to injection. During 

suction flow at increasing values of 

microrotation parameter N2, it is shown 

from Figure 6 that rotation profile increases 

for suction, and thereafter reduces during 

injection. Also, the effect of microrotation 

parameter N3 on rotation profile is seen in 

Figure 7. As it is observed, increasing 

values of N3 parameter show an increasing 

rotation distribution for suction till point η 

= 0.6 (not accurately determined). 

Thereafter rotation distribution decreases 

for injection flow. 

 

 
Fig. 1. Effect of Reynolds number (Re) on velocity profile when 

Re = N2 = 1 and N3 = 0.01. 

 

 
Fig. 2. Effect of microrotation parameter, N1, on velocity profile 

when N1 = N2 = 1 and N3 = 0.01.  
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Fig. 3. Effect of micro rotation parameter, N2 on velocity profile 

when Re = N1 = 1 and N3 = 0.01. 

 

 
Fig. 4. Effect of Reynolds number, Re on rotation profile 

whenN1=N2=1 and N3=0.01. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1



F

 

 

N
2
=1

N
2
=1.5

N
2
=2

N
2
=2.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0



G

 

 

Re=-5

Re=-1

Re=1

Re=5



 

 

Analysis of Micropolar Fluid Flow Through a Porous Channel                                                      Sobamowo et al 

 

 

IJTEA (2019) 67–77 © JournalsPub 2019. All Rights Reserved                                                                  Page 74 

 
Fig. 5. Effect of micro rotation parameter, N1 on rotation profile when 

Re = N2 = 1 and N3 = 0.01. 

 

 
Fig. 6. Effect of micro rotation parameter, N2 on rotation profile 

when Re = N1 = 1 and N3 = 0.01. 
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Fig. 7. Effect of microrotation parameter, N3, on rotation profile when Re = 

N1 = N2 = 1. 

 

CONCLUSION 

In this work, the flow of a micropolar fluid 

conveyed through porous channel driven 

by suction or injection with high mass 

transfer has been analyzed using the 

regular perturbation method. The 

developed analytical solutions are used to 

investigate the effects of flow and rotation 

parameters such as Reynolds number and 

microrotation parameters. The results 

obtained can be used to advance the study 

of micropolar fluid in processes such as 

blood flow, turbulent shear flow, 

microchannel and porous channel. 

 

Nomenclature 

F dimensionless stream function 

G dimensionless microrotation 

H  width of channel (m) 

j micro-inertia density 

N microrotation/angular velocity (S-1) 

N1,2,3 dimensionless parameter 

p embedding parameter  

q  mass transfer parameter(ms-1) 

Re  Reynolds number 

s microrotation boundary condition 

u,v Cartesian velocity components (ms-1) 

x,y  Cartesian coordinate parallel and 

normal to channel (m) 

Greek symbols 

  dimensionless normal distance 

  dynamic viscosity(kgm-1s-1) 

  coupling coefficient(kgm-1s-1) 

  fluid density(kgm-3) 

  stream function(m2s-1) 

s  microrotation/spin gradient viscosity 

(m kg s-) 
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