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ABSTRACT 

A complete analysis of a lid-driven cavity is done using finite difference method of 

computational fluid dynamics. This analysis is applied to the transient Navier–Stokes 

equations in two dimensions as well as continuity equations in two dimensions. The results 

obtained from the present analysis give information on behavior of fluid at different values of 

the Reynolds number. 
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INTRODUCTION 

The lid-driven cavity problem has long 

been used as a test or validation case for 

new codes or new solution methods. The 

problem geometry is simple and two-

dimensional (2D), and the boundary 

conditions are also simple. Simulations 

can also be done at various aspect ratios, 

and it can also be done with the lid 

replaced with a moving fluid. This 

problem has been solved as both a laminar 

flow and a turbulent flow, and many 

different numerical techniques have been 

used to compute these solutions. Since this 

case has been solved many times, there is a 

great deal of data to compare with. We are 

applying transient finite difference method 

(FDM) to Navier–Strokes equation. We 

have converted the unsteady Navier–

Stokes equation into unsteady finite 

difference equation. We are then going to 

run the equations in a software and get the 

results. This work has been done before 

using the finite volume method using 

Ansys software. This would provide us 

some results to compare with. The data 

would be compared with the existing 

results which have been verified and an 

operating domain would be set in which 

the method would work. Once the software 

analysis gives some prominent results 

which seem to match the physical flow, 

then this method can be further used to 

predict different flows on different 

surfaces and different shape of cavities. 

These predictions can be achieved by 

changing the boundary conditions or by 

changing the shape or size of the boundary 

wall of the cavity. 

 

REVIEW OF LITERATURE 

A numerical work is performed to analyze 

combined convection heat transfer in fluid 

flow [1], and a finite volume technique is 

presented for the numerical solution of 

steady laminar flow of Oldroyd-B fluid in 

a lid-driven square cavity over a wide 

range of Reynolds and Weissenberg 
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numbers [2]. The effect of a variable 

spatial magnetic field on ferro-nanofluid 

flow and heat transfer in a double-sided 

lid-driven enclosure with a sinusoidal hot 

wall is investigated [3]. A study of a 

convergent and highly accurate mixed 

finite element technique to model the 

effect of fluid elasticity on the flow 

kinematics and the stress distribution in 

lid-driven cavity flow has been used [4]. 

Mixed convection heat transfer in a lid-

driven cavity along with a heated circular 

hollow cylinder positioned at the center of 

the cavity has been analyzed numerically 

[5]. Improvements to a finite difference 

code, REBUFFS, have made possible the 

first completely successful simulation of 

the 3D lid-driven cavity flow [6], 

analyzing the OpenMP performances in 

order to simulate the lid-driven cavity flow 

using lattice Boltzmann method (LBM) 

[7]. Analyses of laminar mixed convection 

and entropy generation in a cubic lid-

driven cavity have been performed 

numerically [8]. Stereo imaging methods 

are used to measure the positions of solid 

spherical particles suspended in a viscous 

liquid and enclosed in a transparent cubic 

cavity [9]. The problem of the time-

dependent laminar incompressible flow 

motion within parallelepipedic cavities in 

which one wall moves with uniform 

velocity after an impulsive start using a 

particle-streak and a dye emission 

technique [10]. A finite difference scheme 

to compute steady-state solutions of the 

regularized 13 moment (R13) equations of 

rarefied gas dynamics [11], and 3D 

numerical simulations of fluid flow and 

heat transfer in a lid-driven cavity filled 

with a stably stratified fluid have been 

performed to study the effect of a sliding 

lid on the flow and thermal structures in a 

shallow cavity [12–14]. . A finite volume 

technique is done for the numerical 

solution of steady laminar flow of 

Oldroyd-B fluid in a lid-driven square 

cavity over a wide range of Reynolds and 

Weissenberg numbers [2]. A study of a 

convergent and highly accurate mixed 

finite element technique to model the 

effect of fluid elasticity on the flow 

kinematics and the stress distribution in 

lid-driven cavity flow has been used. In 

the numerical investigations, the corner 

singularities have been treated by 

incorporating a controlled amount of 

leakage which allows the computation of 

fully elastic mesh-converged solutions [4]. 

Numerical analysis of a mixed convection 

heat transfer in a lid-driven cavity along 

with a heated circular hollow cylinder 

positioned at the center of the cavity has 

been performed [5]. The effects of Prandtl 

number on the flow structure and heat 

transfer in the cavity are studied for 

laminar ranges of Re and Gr [15]. Various 

calculations through different methods and 

study on the effect of solid volume 

fraction, Rayleigh number and Reynolds 

number on the flow pattern and heat 

characteristics were investigated. Comes 

as positive effect on heat transfer 

enhancement [16]. Various numerical 

simulations of mixed convection flows in a 

square lid-driven cavity partially heated 

from below using Cu–water, Ag–water, 

Al2O3–water and TiO2–water nanofluid 

were studied here, and FDM was 

employed for the solution of the present 

problem [17]. 

 

METHODOLOGY 

Navier–Stokes Equation 

It is a partial differential equation that 

describes the flow of incompressible, 

viscous flow. 

 

A viscous flow is one where the transport 

phenomena of friction, thermal 

conduction, and/or mass diffusion are 

included. These transport phenomena are 

dissipative; they always increase the 

entropy of the flow. 
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𝜌 (
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
) = −

𝜕𝑝

𝜕𝑥
+ 𝜇 (

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
+

𝜕2𝑢

𝜕𝑧2
) + 𝜌𝑔𝑥 

𝜌 (
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧
) = −

𝜕𝑝

𝜕𝑦
+ 𝜇 (

𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
+

𝜕2𝑣

𝜕𝑧2
) + 𝜌𝑔𝑦 

 

The advantage of using a time-dependent 
Navier–Stokes approach is its inherent 
ability to evolve to the correct steady-state 
solution. The momentum equations for a 
viscous flow were identified as the 
Navier–Stokes equations. However, in the 
modern CFO literature, this terminology 
has been expanded to include the entire 
system of flow equations for the solution of 
a viscous flow continuity and energy as 
well as momentum. Navier–Stokes 
equation, in fluid mechanics, is a partial 
differential equation that describes the flow 
of incompressible fluids. The equation is a 
generalization of the equation devised by 
Swiss mathematician, Leonhard Euler, in 
the 18th century to describe the flow of 
incompressible and frictionless fluids. In 
1821, French engineer, Claude-Louis 
Navier, introduced the element of viscosity 
(friction) for more realistic and vastly more 
difficult problem of viscous fluids. 
Throughout the middle of the 19th century, 
the British physicist and mathematician, Sir 
George Gabriel Stokes, improved on this 
work, though complete solutions were 
obtained only for the case of simple 2D 
flows. The complex vortices 
and turbulence, or chaos, that occur in 3D 
fluid (including gas) flows as velocities 
increase, have proven intractable to any but 
approximate numerical analysis methods. 
 

Conservation of Momentum 

The momentum equation is a statement of 

Newton’s second law and relates the sum 

of the forces acting on an element of fluid 

to its acceleration or rate of change of 

momentum. 

 

Newton’s 2nd
 

law can be written as 

follows:  

The rate of change of momentum of a 

body is equal to the resultant force acting 

on the body and takes place in the 

direction of the force. 

 

Newton's second law, expressed above, 

when applied to the moving fluid element 

in Figure 1 says that the net force on the 

fluid element equals its mass times the 

acceleration of the element. This is a 

vector relation, and hence can be split into 

three scalar relations along the x-, y-, and 

z-axes. This type of analysis results into 

the momentum equations as follows: 

 

𝜌
𝐷𝑢

𝐷𝑡
= −

𝜕𝑝

𝜕𝑥
+

𝜕𝜏𝑥𝑥

𝜕𝑥
+

𝜕𝜏𝑦𝑥

𝜕𝑦
+

𝜕𝜏𝑧𝑥

𝜕𝑧
+ 𝜌𝑓𝑥  

𝜌
𝐷𝑣

𝐷𝑡
= −

𝜕𝑝

𝜕𝑦
+

𝜕𝜏𝑥𝑦

𝜕𝑥
+

𝜕𝜏𝑦𝑦

𝜕𝑦
+

𝜕𝜏𝑧𝑦

𝜕𝑧
+ 𝜌𝑓𝑦 

𝜌
𝐷𝑤

𝐷𝑡
= −

𝜕𝑝

𝜕𝑧
+

𝜕𝜏𝑥𝑧

𝜕𝑥
+

𝜕𝜏𝑦𝑧

𝜕𝑦
+

𝜕𝜏𝑧𝑧

𝜕𝑧
+ 𝜌𝑓𝑧  

 

Continuity Equation 
A continuity equation in physics is 
an equation that describes the transport of 
some quantity. It is particularly simple and 
powerful when applied to a conserved 
quantity, but it can be generalized to apply 
to any extensive quantity. 
Since mass, energy, momentum, electric 
charge and other natural quantities are 
conserved under their respective 
appropriate conditions, a variety of 
physical phenomena may be described 
using continuity equations. 
 
Continuity equations are a stronger, local 
form of conservation laws. For example, a 
weak version of the law of conservation of 
energy states that energy can neither be 
created nor destroyed – i.e., the total 
amount of energy in the universe is fixed. 
This statement does not rule out the 
possibility that a quantity of energy could 
disappear from one point while 
simultaneously appearing at another point. 

https://www.britannica.com/science/fluid-mechanics
https://www.britannica.com/science/partial-differential-equation
https://www.britannica.com/science/partial-differential-equation
https://www.britannica.com/science/fluid-physics
https://www.britannica.com/biography/Leonhard-Euler
https://www.britannica.com/biography/Claude-Louis-Marie-Navier
https://www.britannica.com/biography/Claude-Louis-Marie-Navier
https://www.britannica.com/science/viscosity
https://www.britannica.com/biography/Sir-George-Gabriel-Stokes-1st-Baronet
https://www.britannica.com/biography/Sir-George-Gabriel-Stokes-1st-Baronet
https://www.britannica.com/science/turbulence
https://www.britannica.com/science/chaos-theory
https://www.britannica.com/science/gas-state-of-matter
https://www.britannica.com/science/numerical-analysis
https://en.wikipedia.org/wiki/Equation
https://en.wikipedia.org/wiki/Conserved_quantity
https://en.wikipedia.org/wiki/Conserved_quantity
https://en.wikipedia.org/wiki/Intensive_and_extensive_properties
https://en.wikipedia.org/wiki/Mass
https://en.wikipedia.org/wiki/Energy
https://en.wikipedia.org/wiki/Momentum
https://en.wikipedia.org/wiki/Electric_charge
https://en.wikipedia.org/wiki/Electric_charge
https://en.wikipedia.org/wiki/Conservation_law_(physics)
https://en.wikipedia.org/wiki/Conservation_of_energy
https://en.wikipedia.org/wiki/Conservation_of_energy
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Fig. 1. Newton's second law: when applied to the moving fluid element. 

 

A stronger statement is that energy 
is locally conserved: energy can neither be 
created nor destroyed, nor can it "teleport" 
from one place to another – it can only 
move by a continuous flow. A continuity 
equation is the mathematical way to 
express this kind of statement. For 
example, the continuity equation 
for electric charge states that the amount of 
electric charge in any volume of space can 
only change by the amount of electric 
current flowing into or out of that volume 
through its boundaries. 
 
The integral form of the continuity 
equation states that: 
• The amount of q in a region increases 

when additional q flows inward 
through the surface of the region, and 
decreases when it flows outward; 

• The amount of q in a region increases 
when new q is created inside the region, 
and decreases when q is destroyed; 

• Apart from these two processes, there 
is no other way for the amount of q in 
a region to change. 

 
Mathematically, the integral form of the 

continuity equation expressing the rate 

of increase of q within a volume V is 
𝑑𝑞

𝑑𝑡
+ ∯ 𝑗 ∙ 𝑑𝑆 = ∑

𝑠
, where 

• S is any imaginary closed surface, that 
encloses a volume V, 

• S dS denotes a surface 
integral over that closed surface, 

• q is the total amount of the quantity in 
the volume V, 

• j is the flux of q, 
• t is time. 
By the divergence theorem, a general 

continuity equation can also be written 
in a "differential form": 

𝜕𝑝

𝜕𝑡
+ ∇ ∙ 𝒋 = 𝜎 

where 
• ∇⋅ is divergence, 
• ρ is the amount of the quantity q per 

unit volume, 
• j is the flux of q, 
• t is time, 
• σ is the generation of q per unit volume 

per unit time. Terms that 
generate q (i.e., σ > 0) or 
remove q (i.e., σ < 0) are referred to as 
a "sources" and "sinks", respectively.

https://en.wikipedia.org/wiki/Teleportation
https://en.wikipedia.org/wiki/Electric_charge
https://en.wikipedia.org/wiki/Electric_current
https://en.wikipedia.org/wiki/Electric_current
https://en.wikipedia.org/wiki/Closed_surface
https://en.wikipedia.org/wiki/Surface_integral
https://en.wikipedia.org/wiki/Surface_integral
https://en.wikipedia.org/wiki/Divergence_theorem
https://en.wikipedia.org/wiki/Divergence
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Finite Difference Method 

FDMs are numerical methods for solving differential equations by approximating them 

with difference equations, in which finite differences approximate the derivatives. FDMs are 

the dominant approach to numerical solutions of partial differential equations. FDMs are 

thus discretization methods. 

• First, a tailor series expansion is created of the function whose derivatives are to be 

approximated: 

𝑓(𝑥0 + ℎ) = 𝑓(𝑥0) +
𝑓′(𝑥0)

1!
ℎ +

𝑓(2)(𝑥0)

2!
ℎ2 + ⋯ +

𝑓(𝑛)(𝑥0)

𝑛!
ℎ𝑛 + 𝑅𝑛(𝑥) 

• Then, taking x = a, dividing by h and considering the remainder term is sufficiently small, 

we get:  

𝑓′(𝑎) ≈
𝑓(𝑎 + ℎ) − 𝑓(𝑎)

ℎ
. 

 

Error in Finite Differential Method 

• The error in FDM is defined as the difference in the approximate and exact analytical 

methods. 

• To use an FDM to approximate the solution to a problem, one must first discretize the 

problem's domain. This is usually done by dividing the domain into a uniform grid. 

• FDMs produce sets of discrete numerical approximations to the derivative, often in a 

"time-stepping" manner. 

• The error in the method can be reduced by expanding the tailor series to a higher order. 

 

DERIVATION 

Navier–Strokes equation in 2D: 

 
 ∂u

 ∂t 
+u

 ∂u

 ∂x
+𝜗

 ∂u

 ∂y
+Ⱳ

∂u

∂z
=

−1

ρ

∂p

∂x
+

𝜇

𝜌
(

∂2u

∂x2 +
∂2𝑢

𝜕𝑦2 +
∂2𝑢

𝜕𝑧2) +g     (1) 

 ∂𝜗

 ∂t 
+u

 ∂𝜗

 ∂x
+𝜗

 ∂𝜗

 ∂y
+Ⱳ

∂𝜗

∂z
=

−1

ρ

∂p

∂y
+

𝜇

𝜌
(

∂2𝜗

∂x2 +
∂2𝜗

𝜕𝑦2 +
∂2𝜗

𝜕𝑧2) +g    (2) 

 

The above terms are for incompressible 2D Navier–Stroke equation. The following equation 

is incompressible flow equation: 

 
 ∂u

 ∂x
 + 

 ∂𝜗

 ∂y
 = 0 (∵ ∇. 𝑣 = 0)       (3) ∵ ∇. 𝑣 

 In order to simplify the discretization process, steam function–vorticity method is easy and 

suitable at elementary level. This is accompanied by finite difference description of formatted 

equations. 

 

The simplicity of converting u, 𝜗 velocities in stream function is actually converting two 

variables into one variable. Hence the computational complexity of calculating variables gets 

reduced. 

 

Hence, u = 
 ∂Ψ

 ∂y
 and 𝜗 = − 

𝜕Ψ

𝜕𝑥
, according to the definition of stream function.  (4) 

 

https://en.wikipedia.org/wiki/Numerical_methods
https://en.wikipedia.org/wiki/Differential_equations
https://en.wikipedia.org/wiki/Recurrence_relation#Relationship_to_difference_equations_narrowly_defined
https://en.wikipedia.org/wiki/Finite_difference_approximation
https://en.wikipedia.org/wiki/Derivative
https://en.wikipedia.org/wiki/Partial_differential_equation
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From the definition of vorticity, 
𝜕𝜗

𝜕𝑥
 - 

𝜕𝑢 

𝜕𝑦
 = 𝜔           (5) 

 

Now, differentiating Equations (1) and (2) with respect to “y” and “x”, respectively, we get 

 
𝜕2𝑢

𝜕𝑡𝜕𝑦
+

𝜕𝑢𝜕𝑢

𝜕𝑥𝜕𝑦
+u

𝜕2𝑢

𝜕𝑦𝜕𝑥
+

𝜕𝑢

𝜕𝑦

𝜕𝜗

𝜕𝑦
+𝜗

𝜕2𝑢

𝜕𝑦2=
−1

𝜌

𝜕𝑝

𝜕𝑢𝜕𝑥
+

𝜇

𝜌
(

𝜕3𝑦

𝜕𝑦𝜕𝑥2 +
𝜕3𝑦

𝜕𝑦3)    (6) 

𝜕2𝑦

𝜕𝑡𝜕𝑥
+

𝜕𝜗

𝜕𝑥

𝜕𝑢

𝜕𝑥
+

𝜕𝜗

𝜕𝑦

𝜕𝜗

𝜕𝑥
+u

𝜕2𝑦

𝜕𝑥2+𝜗
𝜕2𝑦

𝜕𝑦𝜕𝑥
=

−1

𝜌

𝜕2𝑦

𝜕𝑦𝜕𝑥
+

𝜇

𝜌
(

𝜕3𝑢

𝜕𝑥3 +
𝜕3𝜗

𝜕𝑦2𝜕𝑥
)     (7) 

 

From Equations (6) and (7),  

 
𝜕2𝑦

𝜕𝑡𝜕𝑦
−

𝜕2𝜗

𝜕𝑡𝜕𝑥
+ 𝑢 (

𝜕2𝑢

𝜕𝑦𝜕𝑥
−

𝜕2𝜗

𝜕𝑥2) + 𝜗 (
𝜕2𝑢

𝜕𝑦2 −
𝜕2𝜗

𝜕𝑦𝜕𝑥
)+

𝜕𝑢

𝜕𝑦
(

𝜕𝜗

𝜕𝑦
+

𝜕𝑢

𝜕𝑥
) −

𝜕𝜗

𝜕𝑥
(

𝜕𝑢

𝜕𝑥
+

𝜕𝜗

𝜕𝑦
) = 

𝜇

𝜌
(−

𝜕3𝜗

𝜕𝑥3 +

𝜕3𝑢

𝜕𝑦𝜕𝑥2 +
𝜕3𝑢

𝜕𝑦3 −
𝜕3𝜗

𝜕𝑥𝜕𝑦2)                                  (8) 

 

By applying this, Equation (8) gets reduced to vorticity equation as follows: 

 
𝜕𝜔

𝜕𝑡
+ 𝑢

𝜕𝜔

𝜕𝑥
+ 𝜗

𝜕𝜔

𝜕𝑦
= −

𝜇

𝜌
(

𝜕2𝜔

𝜕𝑥2 +
𝜕2𝜔

𝜕𝑦2 )      (9) 

 

Hence, Equation (9) is now dimensional governing equation.  

Converting Equation (9) into dimensionless equation, 

 

let 𝛺 =
𝜔ℎ

𝑣𝑓
, 

X = 
𝑥

ℎ
, 𝑌 =

𝑦

ℎ
, 𝑈 =

𝑢

𝑣𝑓
; 𝑉 =

𝜗

𝑣𝑓
;      (10) 

T = 
𝑡𝑣𝑓

ℎ
; Re=Reynolds number = 

𝜌𝑣𝑓ℎ

𝜇
. 

 

Substituting Equation (10) in Equation (9), we get 

 
Ω𝑣𝑓

ℎ
𝜕𝑇ℎ

𝑣𝑓

+ (𝑈𝑣𝑓)
𝜕(

Ω𝑣𝑓

ℎ
)

𝜕(𝑋ℎ)
+ (𝑣𝑣𝑓)

𝜕(
Ω𝑣𝑓

ℎ
)

𝜕(𝑌ℎ)
=

𝜇

𝜌
[

𝜕2Ω𝑣𝑓

ℎ

𝜕(𝑌ℎ)2 +
𝜕2(

Ω𝑣𝑓

ℎ
)

𝜕(𝑋ℎ)2
]    (11) 

𝜕Ω

𝜕𝑇
+ 𝑈

𝜕Ω

𝜕𝑋
+ 𝜗

𝜕Ω

𝜕𝑌
=

1

𝑅𝑒
(

𝜕2Ω

𝜕𝑌2 +
𝜕2Ω

𝜕𝑋2)       (12) 

 

The above equation is now dimensionless governing differential equation. 

Since, central difference gives us 

 

Ω𝑖𝑗
𝑛+1 − Ω𝑖𝑗

𝑛

Δ𝑇
+

𝑈𝑖+1,𝑗
𝑛 Ω𝑖+1,𝑗

𝑛 − 𝑈𝑖−1,𝑗
𝑛 Ω𝑖−1,𝑗

𝑛

2Δ𝑋
+

𝑉𝑖,𝑗+1
𝑛 Ω𝑖,𝑗+1

𝑛 − 𝑉𝑖,𝑗−1
𝑛 Ω𝑖,𝑗−1 

𝑛

2Δ𝑌
 

=
1

𝑅𝑒
(

Ω𝑖+1,𝑗
𝑛 −2Ω𝑖,𝑗

𝑛 +Ω𝑖−1,𝑗
𝑛

(Δ𝑋)2 +
Ω𝑖,𝑗+1

𝑛 −2Ω𝑖,𝑗
𝑛 +Ω𝑖,𝑗−1

𝑛

(Δ𝑌)2 )      (13) 
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Also, we had 
𝜕𝑢

𝜕𝑥
+

𝜕𝜗

𝜕𝑦
= 0 (incompressible equation)                 (14) 

Using stream function equation, 

 
𝜕2Ψ

𝜕𝑥2 +
𝜕2Ψ

𝜕𝑦2 = −ω         (15) 

 

Using Ψ =
Ψ

𝑣𝑓ℎ
 non-dimensional, 

 
𝜕2𝑦

𝜕𝑥2 +
𝜕2𝑦

𝜕𝑦2 = −Ω          (16) 

The discretization of Equation (16) is given as follows: 

 
Ψ𝑖+1,𝑗

𝑛 +Ψ𝑖−1,𝑗
𝑛 −2Ψ𝑖,𝑗

𝑛

(Δ𝑥)2 +
Ψ𝑖,𝑗+1

𝑛 +Ψ𝑖,𝑗−1
𝑛 −2Ψ𝑖,𝑗

𝑛

(Δ𝑦)2 =−Ω𝑖,𝑗
𝑛       (17) 

 

Once the equations are discretized, the next step is the application of boundary condition. 

 

 
 

The top has x-direction dimensional velocity equal to unity, but since we are dealing with 

stream functions, the value of Ψ = 0 at all boundary conditions. From boundary conditions, 

using Equation (17), we can write Ω in terms of Ψ. 

Rewriting Equation (17), 

 

−Ω𝑖,𝑗
𝑛 =

Ψ𝑖,𝑗+1
𝑛 +Ψ𝑖,𝑗−1

𝑛 −2Ψ𝑖,𝑗
𝑛

(Δ𝑌)2 +
Ψ𝑖+1,𝑗

𝑛 +Ψ𝑖+1,𝑗 
𝑛 −2Ψ𝑖.𝑗

𝑛

(Δ𝑋)2      (18) 

 

For left, i = 1 in Equation (18), and j = j and (remains same): 

∴ Ψ𝑙𝑒𝑓𝑡 = 0 becomes Ψ𝑖,𝑗
𝑛 = 0 

I + 1 = 2, i – 1 = 0  j + 1 = j + 1 (remains same) 
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∴ For left, Equation (18) becomes 

Ω𝑖,𝑗
𝑛 =

−Ψ0,𝑗
𝑛 −Ψ2,𝑗

𝑛

(Δ𝑥)2          (19) 

 

We know that 𝜗 = 0 (vertical velocity=0) for left, 
𝜕Ψ

𝜕𝑥
= 0 ∴ writing in central difference scheme,                 (20) 

Ψ2,𝑗
𝑛 −Ψ0,𝑗

𝑛

2Δ𝑋
= 0, 𝑗         (21) 

Ψ0,𝑗
𝑛 = Ψ2,𝑗

𝑛          (22) 

 

Putting Equation (22) in Equation (19), Ω1,𝑗
𝑛 =

−2Ψ2,𝑗
𝑛

(Δ𝑋)2                (23) 

Similarly, for right side and bottom side, 

 

Ω𝑖.𝑗
𝑛 =

−2Ψ𝑖−1+𝑗
𝑛

(Δ𝑋)2         (24) 

Ω𝑖.1
𝑛 =

−2Ψ𝑖,2
𝑛

(Δ𝑌)2          (25) 

 

For top side, 

Ω𝑖+𝑗
𝑛 = − [

−Ψ𝑖,𝑗−1
𝑛 +Ψ𝑖,𝑗+1

𝑛

(Δ𝑌)2 ]       (26) 

 

From the definition of stream function, in non-dimensional form for top side, 

 

𝑈𝑉𝑓 =
𝜕Ψ𝑉𝑓ℎ

𝜕𝑌ℎ
         (27) 

 

For top, Ψ𝑖,𝑗+1
𝑛  does not exist (everything is non-dimensional); 

 

∴ we use U = 
𝜕Ψ

𝜕𝑌
        (28) 

 

∴ central difference scheme on Equation (28) 

 

Ψ𝑖,𝑗+1
𝑛 − Ψ𝑖,𝑗−1

𝑛 = 𝑈Δ𝑌       (29) 

Ψ𝑖,𝑗+1
𝑛 = 𝑈Δ𝑌 + Ψ𝑖,𝑗−1

𝑛        (30) 

 

Put (30) in (26) to get Ψ𝑖.𝑗+1, U is x-directional non-dimensional velocity 

In order to get non-dimensional X and Y velocities, we use central difference scheme: 

 

𝑈𝑖,𝑗
𝑛 =

Ψ𝑖,𝑗+1
𝑛 −Ψ𝑖,𝑗−1

𝑛

2Δ𝑌
 ;  𝑉𝑖,𝑗

𝑛 = −
Ψ𝑖+1,𝑗

𝑛 −Ψ𝑖−1,𝑗
𝑛

2Δ𝑋
 

 

RESULTS 

The following results (Figures 2–13) were obtained for different values of Reynolds number. 

It can be easily be seen that the vorticity increases with the increase in Reynolds number. 

Re = 1000 
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Fig. 2. Simulation result for Re = 1000. 

 

 
Fig. 3. Simulation result for Re = 1000. 

 
Fig. 4. Simulation result for Re = 1000. 
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Fig. 5. Simulation result for Re = 1000. 

Re = 750 

 

 
Fig. 6. Simulation result for Re = 750. 

 

 
Fig. 7. Simulation result for Re = 750. 
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Fig. 8. Simulation result for Re = 750. 

 

 
Fig. 9. Simulation result for Re = 750. 

Re = 500 

 
Fig. 10. Simulation result for Re = 500. 
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Fig. 11. Simulation result for Re = 500. 

 

 
Fig. 12. Simulation result for Re = 500. 

 

 
Fig. 13: Simulation result for Re = 500. 
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CONCLUSION 

These equations show the velocity of the 

fluid particles at any point in the control 

2D system. These equations cannot be 

solved arithmetically but have to be 

solved numerically. This has be done by 

the use of programing software 

MATLAB for the 1000, 750 and 500 

values of Reynolds number. 
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