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Abstract 

This paper presents a human jumping mechanism inspired design of a jumping mini robot 

including the theoretical analysis on jumping dynamics. In the present study, we would focus 

on optimizing the spring design to attain a theoretical jump height of about 30 cm. The 

analysis involves spring type, material and specifications selection including fatigue. Also, 

the currently employed system for jumping robots takes plenty of time to load the springs and 

to execute the jump. The time could be reduced by optimally selecting a multithreaded power 

screw in accordance to the raising load and torque needed. Improvement and analysis of 

existing mechanical systems using meticulous calculations and design theory is extremely 

important process in today’s world. This not only improves the performance but also saves 

energy and scarce resources. In this paper, we would dwell into optimization and analysis of 

the jumping mechanism of an indigenously developed. Stress analysis of various parts of 

robot is also done. 
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INTRODUCTION 

Design is an innovative and highly 

iterative process. It is also a decision-

making process. Decisions sometimes 

have to be made with too little 

information, occasionally with just the 

right amount of information, or with an 

excess of partially contradictory 

information. Improvement and analysis of 

existing Mechanical systems using 

meticulous calculations and design theory 

is extremely important process in today’s 

world. This not only improves 

performance but also saves energy and 

scarce resources. M. Wang et al. designed 

the jumping mechanism inspired from 

frog.
[1]

 In some past studies, researchers 

have tried to develop miniature robot 

which can work in multi degree of 

freedom.
[2] 

 

In the present paper, we would dwell into 

optimization and analysis of the jumping 

mechanism of an indigenously developed. 

This autonomous robot is shown in 

Figure 1. It follows a particular direction 

as given by the user and avoids all 

obstacles that come in its route and to also 

jump when instructed to do so.  

 

 
Fig. 1: CAD Model of Jumping Robot. 



Numerical Analysis and Optimization of Jumping Robot                                                              Yadav and Gupta 

 

 

IJMDM (2016) 1-14 © JournalsPub 2016. All Rights Reserved                                                                  Page 2 

The present mechanical design as shown 

in Figure 1 comprises of following 

components:  

1. Power Screw Rods: These rods are 

powered with motors for the up and 

down motion of the horizontal plates 

which is connected with these lead 

screw rods.  

2. Vertical Guiding Rods: Mild steel rods 

are used which will guide the vertical 

motion of the horizontal plates. It helps 

to stabilize the system.  

3. Horizontal Plates: This design includes 

two pair of horizontal plates. These 

plates provide the up and down motion 

and thus, resulting in the compression 

of spring.  

4. Connecting Plates: These plates ensure 

that the level of both the horizontal 

plates remains same.  

5. Motors: Six motors are mounted on the 

top pair of horizontal plates and on the 

bottom pair of plates. Accordingly, 

these motors perform two different 

functions:  

(a) Providing vertical up and down 

motion to horizontal plates through 

lead screws (60 rpm).  

(b) Driving the wheels (100 rpm).  

6. Latch: It is attached with the lower pair 

of horizontal plates and it latches with 

the base as the top plate moves 

downwards.  

7. Conical Structure: This structure 

ensures that the latch goes vertically 

inside the hole and gets latched with 

the base.  

8. Limit Switch: It deals with changing 

direction of motor after the latching 

takes place.  

9. Torsional Spring: Four Torsional 

springs have been used in this design 

for providing the required potential 

energy for jumping.  

10. Wheels: To drive the robot. 

 

The design was inspired from human 

jumping mechanism through knees. The 

source of energy is from moments applied 

by human’s knee muscle shown in Figure 

2. When human has to jump, the legs are 

bending at suitable angles, and then 

sudden moments are applied by knee 

muscles causing reaction forces from 

ground to lift up.  

 

The various stages are explained in Figure 

2 as: 

Stage 1: Human starts to bend his knees to 

suitable angles as per jump requirement. 

 

Stage 2: The knee suddenly applies 

angular impulse, leading to acquiring some 

velocity by upper body. 

 

Stage 3: The body further moves up. The 

reaction from ground just vanishes as the 

knees straighten. 

 

Stage 4: The body rises up till all the 

gained kinetic energy gets converted back 

to potential energy. Instantaneously, the 

body is at rest and then again starts coming 

back to ground due to gravity. 

 

 
Fig. 2: Human Jumping Mechanism. 

 

Driving a mechanical system through the 

above explained situation goes as follows. 

In this mechanical design, two high torque 

motors are attached to two vertical lead 

screw rods. The motors move these rods 

up and down which in turn move the 

horizontal plates. The latch is attached 

with the middle pair of horizontal plate. 

The latch moves vertically downwards as 

the plates moves downwards. Conical 

structure ensures that the latch goes 

vertically inside the hole in the base. The 

latch locks as it passes through the hole on 

the conical structure. Once latch enters the 

hole, it presses a limit switch. After limit 
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switch is pressed, it sends a signal to 

Arduino (a microcontroller) and gives 

command which reverses the direction of 

motors. Thus, now the compression of all 

the four torsional springs starts. Thus this 

can be compared to the situation where an 

external force compresses the springs by 

‘x’. When springs are fully compressed, 

the latch de-latches with the help of 

brackets attached in middle horizontal 

plates. As soon as, the latch de-latches, the 

spring retracts. The sudden expansion 

increases the normal reaction from ground 

drastically which gives a huge thrust on 

the robot leading to a jump. And this as we 

can realize is the situation where the 

external force is suddenly removed to 

provide an impulse which creates a finite 

height ‘h’ jump. 

 

MATHEMATICAL MODEL OF THE 

SPRING-MASS SYSTEM 

The system is modelled using lumped 

spring-mass system. It is a semi-definite 

system consisting of two different masses 

(m1 and m2) connected using a helical 

spring as shown in  

 

When a force F is applied to a vertically 

positioned independent two mass system, 

which is connected with a spring of force 

constant k, a compression of x is achieved 

slowly. When it is released, both the 

masses start moving upward while 

constantly vibrating at natural frequency as 

the system reaches its highest point and 

strikes back the ground. The various stages 

are explained in Figure 3.  

 

 
Fig. 3: Spring-Mass Model. 

Governing Equations 
The governing equation can be simplified 

and written in modified form.
[3]

 

[
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Boundary Conditions  

Mass m1 is compressed to 45 mm and then 

released. Mass m1 attains a velocity v1 

when mass m2 is about to leave the ground. 

The boundary conditions of the given 

system can be found out at time when the 

mass m2 just leave the ground. The 

displacement of m2and velocity of m2 is 

zero at this time. The displacement of m1 

and velocity of m1 can be found out using 

force balance and energy balance. 

 

Writing force balance for m2 at time when 

system is about to leave the ground. 

2 10 0yF mg kx                         Eq. (2) 

 

2
10

mg
x

k


                                   Eq. (3) 

 

With this     displacement of m1 from the 

mean position we can found out the 

velocity of m1 at this point using energy 

balance.  

 

∑ Energy at point of maximum 

compression = ∑ Energy at point the m2 is 

about to leave ground 

 

2
110101
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     Eq. (4) 

where  

 

X0 is initial compression of the spring, v1 is 

the velocity of m1 at time when m2 is about 

to leave ground.  
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So with these initial conditions we can find 

out the solution of the given differential 

equation. The governing equations with 

the initial conditions are solved using 

MATLAB code (Figures 4, 5).
[3]

 

 

 
Fig. 4: Plot of Height Vs Time for m1 = 1.5 kg, m2 = 3.5 kg and k = 47000 N/m. 

 

 
Fig. 5: Plot of Height Vs Time for m1 = 2.2 kg, m2 = 2.8 kg and k = 32000 N/m. 

 

Determining the Spring Type and 

Constant 

The original system employs four torsional 

springs to accomplish the task of jumping. 

But the main disadvantage of torsion 

spring is that alongside a vertical 

component of force on the m1, it also 

exerts a horizontal component due to its 

obtuse angle which does not contribute to 

the jumping action of the robot. The 

horizontal component of the force overall 

cancels due to the presence of even 
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number of springs, but lead to wastage of 

force (energy) which could have been used 

to increase the jump of the system. Hence, 

we have proposed to replace the four 

torsional springs with four helical springs 

and present analysis based on helical 

springs in the following sections. Helical 

springs also fit our proposed mathematical 

model and are easily available in the 

market.  

 

In this proposed mathematical model, we 

have combined the four springs into one 

and find an equivalent spring constant 

which is four times the spring constant of 

each spring. 

 

The code requires m1, m2, k and initial 

compression of the springs as its input. As 

output it provides us the plot of 

displacements x1 and x2 vs t (time). To find 

the jump height of the system, we find the 

maxima of the x2 vs. t plot before x2 

becomes zero, as this denotes the time 

when the lower mass strikes the ground 

back and our mathematical model becomes 

invalid beyond this time. Hence, we could 

iterate the value of k manually till we get 

the desired value of jump height. 

 

Originally the system has mass 

distribution as           and    

       and after iteration the value of 

equivalent k was found out to be 

47000 N/m corresponding to 30 cm jump 

as shown in Figure 6. But after observing 

the effect of parameters like mass 

distribution and initial compression on the 

value of k for the desired height, we 

noticed that we would be requiring a lower 

k if we increase m1 and decrease m2 while 

keeping their sum constant.  

 

As the total mass of our bot was fixed to 

5 kg, hence we decided to shift battery and 

electronics equal to 0.7 kg (maximum 

possible value) on the upper deck from the 

lower deck. So our new mass distribution 

becomes            and           
and we get a value of spring constant k = 

32000 N/m for 30 cm jump as shown in 

Figure 7. There is a straight decrease of 

32% in the value of k.  

 

Finally, the spring constant for each of the 

helical spring needed becomes: 

                      

 

FINALIZING THE SPRING 

SPECIFICATIONS 

We iterated the MATLAB code
[4]

 for 2 

mass system and found out the spring 

constant for the spring should be 

32000 N/m. Given system employs 4 

spring attached in parallel to each other, so 

we have to design a spring for k = 

8000 N/m. The present system is in such a 

way that the compression of spring is 

about 4.5 cm, so we can found out the 

maximum force at compression. The free 

length of the spring should be about 

10 cm. 

 

With these parameters known we can write 

the code for spring design. The code we 

have written takes the values of G (Shear 

modulus), A (constant) and m (exponent) 

for estimating minimum tensile strength of 

material, Force applied and respective 

displacement as input.  

 

We have employed check on the values of 

C (spring index, 4 < C < 12), Na (number 

of active turns, 3 < Na < 15), ns (safety 

factor, ns > 1.2) lo (free length) and lo (crit.) 

(lo critical for spring to buckle, lo < lo (crit.)). 

 

We iterated the given code for values of d 

ranging from 1 to 7 mm some values of d 

satisfy all the condition for spring design. 

These values of d along with various 

others parameters are presented in Table 1. 
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Table 1: Spring Specification Table. 
d (mm) 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 

D (mm) 21.090329 23.237062 25.503063 27.891422 30.405124 33.047072 35.820105 38.727006 

C 6.5907278 7.041534 7.500901 7.9689778 8.4458678 8.9316411 9.4263434 9.9300015 

Na 13.727531 11.607927 9.8942115 8.4938144 7.3385835 6.3775005 5.5718113 4.8916935 

Lo (mm) 98.528098 93.20616 88.840319 85.228351 82.218901 79.696752 77.572883 75.777605 

Lo(crit.) (mm) 110.93513 122.22695 134.14611 146.70888 159.93095 173.8276 188.41375 203.70405 

nf 1.372082 1.3880358 1.403765 1.4192806 1.4345928 1.4497112 1.4646444 1.4794005 

ns 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 

Ta (MPa) 358.15407 355.26724 352.48884 349.81178 347.22963 344.73651 342.32707 339.99642 

Tm (MPa) 358.15407 355.26724 352.48884 349.81178 347.22963 344.73651 342.32707 339.99642 

KB 1.2140144 1.1986797 1.1851605 1.1731547 1.1624248 1.1527811 1.1440699 1.1361656 

f (Hz) 187.86028 188.73 189.39004 189.87512 190.21327 190.42737 190.53625 190.55557 
 

 
 

 

So for the minimizing the cost we will take 

the spring with d = 3.2 mm and other 

dimension of spring can be found out 

using above table. 

 

DESIGNING 

Shaft Design 

The jumping robot contains two vertical 

power screw shafts for the compression of 

springs and subsequent downward 

translation of mass m1. It uses two high 

torque (38 kg cm) and 60 rpm motors to 

rotate the power screws. The present shaft 

specifications are, length 120 mm, 

diameter 11 mm and single ACME 

threading of pitch 1.656 mm. An axial 

15 mm blind hole is drilled on one side of 

the power screw and is joined to the motor 

shaft with a pin joint for torque 

transmission. The other side is embedded 

in nylon block in order to provide support 

to the screw (similar to a collar). With all 

this, the system takes quite a time to load 

the spring and finally execute the jump.  

 

Hence, in the subsequent sections we 

would use the theory of power screw and 

beam loading to optimize the threaded 

shaft specs and increase the speed of the 

spring loading mechanism by using multi-

threaded screw. 

 

Buckling 

As a first step, we would determine the 

minimum possible shaft diameter (d) 

without changing the original shaft length 

of 120 mm. We had developed a code 

which takes input of axial load (P), yield 

strength (Sy), elastic modulus of rigidity 

(E), shaft length (l) and design factor (nd). 

The code employs the J. B. Johnson 

formula to find the minimum d.  

 

For a circular shaft radius of gyration, k 

  
 

 
 

Critical axial force is given by, 
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                                           Eq. (8) 
 

The end conditions are fixed-fixed; hence 

the recommended value of end condition 

constant is taken as C = 1.2 

 

The code calculates d using parabolic 

formula and then checks it against critical 

slenderness ratio. If it violates the 

condition for critical slenderness ratio, 

then it calculates the diameter (d) using 

Euler’s formula. 
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For the power screw we have proposed to 

use the following steel which is in general 

used in the industry for this application 

(Table 2):  

 

Table 2: Properties of Steel AISI 4140.
[5]

 
AISI 

No. 

Heat Treatment Temperature 

(°C) 

Tensile Strength 

(MPa) 

Yield Strength 

(MPa) 

4140 Quenched and 

Tempered 

650°C 758 655 

 

So, finally we get a minimum possible 

diameter d = 4.3 mm from the Euler’s 

formula. 

 

SIMULATION RESULTS 

In order to 

1. Determine the appropriate dimensions 

of the shaft 

2. Find the Von-Mises stress distribution 

on the shaft and using the maximum 

value for calculating fatigue factor of 

safety of the shaft. 

3. Verify the value of Von Mises Stress at 

the root of the Power Screw which was 

calculated using power screw approach 

 

ABAQUS
[6]

 software environment was 

chosen to perform all the required 

simulation work. So, we started with the 

initial design of the shaft which was used 

in the jumping robot and developed its 

CAD model and then did the analysis part 

in the following steps: 

Firstly, import the CAD model from the 

Autodesk Inventor Pro, then using 

ABAQUS  

1. Set its Mechanical Properties (E = 

210 GPa and Poisson’s Ratio = 0.3)  

2. Applied the appropriate Boundary 

Condition (other end of shaft will be 

ENCASTRE [U1 = U2 - U3 - UR1 - 

UR2 = UR3 = 0]) 

3. And finally applied the Axial Load and 

the Torque on the shaft. 

4. Now we moved further into the Mesh 

Generation Section where we created 

the fine mesh on the surface of the 

shaft as shown in Figure 7. 

5. And the last step is the simulation step 

we run the simulation and obtained the 

result of Von-Mises Stress Distribution 

as shown below (Figures 8–12): 

 

 
Fig. 6: Image Showing the Shaft with Appropriate Boundary Condition and Applied Load. 
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Fig. 7: Image Showing the Shaft Along with the Mesh. 

 

 
Fig. 8: Image Showing Von-Mises Stress Distribution on the Bottom Part of the Shaft. 

 

Inference  

From the result obtained above, we 

observed that the critical point on the shaft 

where the Von-Mises Stress is maximum, 

is on the hole for key (the region with the 

red color) with the magnitude of 

393.4 MPa. We calculated the factor of 

safety using Langer Criterion 

                 
 (                 )

 (                     )
 

       

 

And Stress concentration factor = 2.75 

 

Which exceeds from the theoretical value 

(Kts = 2.65) calculated using Figure A-15-

10 from Shigley’s Mechanical Engineering 

Design 9th Edition.
[5]

 

 

Therefore, we have decided to modify the 

shaft geometry in order to avoid the failure 

in any way. We had iterated the whole 

process with different dimensions of the 

shaft and finally ended up finding the 

correct dimension parameters for the shaft. 

Following is the analysis part of the final 

Shaft geometry: 

 

Since, there were no chances of any failure 

in the threaded region therefore all we 

needed to care about was the hole for key 



  

 

 

 

IJMDM (2016) 1-14 © JournalsPub 2016. All Rights Reserved                                                                  Page 9 

International Journal of Machine Design and Manufacturing 
Vol. 1: Issue 2  

www.journalspub.com 

 

where motor transfer its torque to the shaft 

thus, we increased the outer diameter from 

10 to 13 mm of the shaft up to the point 

after which threading starts and inner 

diameter being equal to the motor’s shaft 

diameter hence remains the same. 

6. Repeating first step including setting 

up mechanical properties, defining 

boundary condition and load condition. 

7. Now we moved further into the Mesh 

Generation Section where we created 

the fine mesh on the surface of the 

shaft as shown below: 

8. And the last step is the simulation step 

we run the simulation and obtained the 

result of Von-Mises Stress Distribution 

as shown below: 

 

 
Fig. 9: Image Showing the Shaft with Appropriate Boundary Condition and Applied Load. 

 

 
Fig. 10: Image Showing the Shaft Along with the Mesh. 

 

 
Fig. 11: Image Showing Von-Mises Stress Distribution on the Shaft. 
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Fig. 12: Image Showing Von-Mises Stress Distribution on the Bottom Part of the Shaft. 

 
 

 

 

 

Inference 

From the result obtained above, we 

observed that the critical point on the shaft 

where the Von-Mises Stress is maximum, 

is on the hole for key (the region with the 

red color) with the magnitude of 115.5 

MPa. We calculated the factor of safety 

using Langer Criterion 

                 
 (                 )

 (                     )
       

 

And Stress concentration factor = 2.74  

 

The calculated stress concentration factor 

matches the theoretical value (Kts = 2.75) 

calculated using Figure A-15-10 from 

Shigley’s Mechanical Engineering Design 

9th Edition.
[5]

 

 

Power Screw Design 
The calculation for number of multithread 

is as follows,  

 

FORCE ANALYSIS 

 

 
Fig. 13: Power Screw. 

 

In the Figure 13, F is the axial load from 

springs F = 720 N 

p is the pitch of thread  

λ is lead angle 

l = n×p  

n is no. of multithread start  

dm is mean diameter of shaft 

 

The system is right hand (RH) thread and 

shaft is rotating anticlockwise (Figures 14, 

15). 

2
m m

R
m

Fd l fd
T

d fl



 

   
                            Eq. (9) 

f is coefficient of friction between thread 

and nut. 
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PR is load to raise the screw. 

N is normal reaction on thread. 

 

 
Fig. 14: Forces on a Power Screw. 

 

Torque on shaft is product of force and 

mean radius. 

 

TR is the torque to overcome thread 

friction and raise the load 

The collar friction is between nylon and 

steel  

 

2
c c

c

Ff d
T 

                                    Eq. (10) 

 

Total torque on thread is  

 

2 2
m m c c

R
m

Fd l fd Ff d
T

d fl



 

           Eq. (11) 

 

For power screws, the Acme thread is not 

as efficient as the square thread, because 

of the additional friction due to the 

wedging action and the component of 

force did not get zero α = 90 degrees for 

square thread  

 

STRESS ANALYSIS 

Geometry of square thread useful in 

bending and transverse shear stress at the 

thread of the root. 

 
Fig. 15: Stresses on Screw. 

 

The stresses on root of thread are 

calculated is as follows 

6
x

r t

F
d np





 

0xy 
                    Eq. (12) 

2

4
y

r

F
d





 

3

16
yz

r

T
d





              Eq. (13) 

0z 
  

0zx 
                    Eq. (14) 

dr is minor diameter  

nt is no of thread 

Von mises stress (
' )  

 

 Eq. (15) 

And factor of safety (ns) 

'
y

s

S
n




                                         Eq. (16) 

 

The code uses input i.e., axial load (F), 

coefficient of friction(f), coefficient of 

friction between collar and screw(fc), 

pitch(p) and design factor of shaft(nd) and 

to give output as Torque(Tr),  

Von Mises stress(sv) and no. of 

multithread start(n). We also need to 

iterate the code to get the correct values of 

n. 
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The output of the code is  

N = 2.98 (no. of multithread start) 

sv = 58.22 MPa (Von Mises stress) 

Tr = 3.77 Nm (Torque) 

 

FATIGUE 

Se = Endurance limit at the critical location 

of shaft 

ka = Surface condition modification factor 

kb = Size factor 

kc = Loading factor 

kd = Temperature factor 

ke = Reliability factor 

kf = Miscellaneous factor 

Se’ = Endurance limit  

dm = Mean diameter of the shaft 

Sut = Minimum tensile strength 

 

Se = ka.kb.kc.kd.ke.kf.Se’                 Eq. (17) 

 

Since, the material of shaft is 650°C, Q&T 

treated AISI 4140 Steel, and so we use 

surface finish as Hot-rolled (Table 3): 

 

Table 3: Tabulated Results for AISI 4140 

Steel. 
Surface Finish Factor a Exponent 

b Sut, 

kpsi 

Sut, kpsi 

Hot rolled 14.4 57.7 -0.718 

 

ka = 57.7(758) - 0.718 = 0.494 

kb = 0.879(d) - 0.107      2.79 < d < 51 mm. 

kb = 1.24(10) - 0.107 = 0.969 

kc = 1           for torsional and axial loading 

kd = 1        for room temperature (20-25⁰C) 

ke = 0.620              for 99.9999% reliability 

kf  = 1            overlooking the misc. factors 

Se’ = 0.5(Sut)                for Sut < 1400 MPa 

 

So, we get  

Se = 112.7 MPa 

 

Calculating the factor of safety (for 

fatigue) using Goodman criterion 
  

  
  
   
  
 
   
   

                                          (  ) 

   = Fatigue factor of safety 

    ,     = Von Mises stresses amplitude 

and mean 

As per the analysis done of shaft done on 

the ABAQUS software (section 4.2) we get 

the result that the Von Mises stress around 

the critical location (at the pin joint) is 

115 MPa. 

Since the load varies from zero to 

maximum     =    = 57.5 MPa 
  

  
  

    

     
 
    

   
 

nf = 1.706 

 

which implies that the life of the shaft is 

infinite. 

 

EXPERIMENTAL ANALYSIS 

We want to find out the jump attained by 

the present jumping robot and the 

displacement profile of two masses during 

the jump. We also want to find out the 

damping constant C in real system and 

apply the approximate value to earlier 

MATLAB simulation.
[3] 

The Figure 16 

depicts the attached accelerometer on the 

top mass. The signals from accelerometer 

are amplified using amplifier and read by 

oscilloscope. 

 

 
Fig. 16: Experimental Setup. 

 

We calibrated the amplifier and 

oscilloscope and found out the result of the 

oscilloscope. The above experimental 

result was obtained with torsional spring 

attached to two mass systems. It is evident 

from the oscilloscope that the coupled 
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vibration in torsional spring system is 

difficult to detect.  

 

The frequency of the displacement graph 

cannot be obtained from the oscilloscope 

as with the present experimental setup the 

oscilloscope does not show sinusoidal 

vibrations. The jump calculated from the 

graphs is found out to be 6.1 cm (100 mV 

= 1 mm). If we improve upon the 

experimental setup, we can find out the 

frequency of sinusoidal vibrations fexp. 

 

The resolution of oscilloscope needs to be 

increased largely to observe the oscillating 

motion of top and bottom mass while 

jumping. Since, the damping in system is 

due to friction and other losses, it is 

independent from the spring chosen 

(Figure 17).
[7,8]

  

 

From the frequency of vibration we can 

find out damping constant C with the help 

of        . 
 

21   ndf                              Eq. (19) 

in this case dff exp . 

 

 
Fig. 17: Oscilloscope Results. 

 

If the sensitivity and accuracy of the 

experimental setup is increased, we can 

find many other correlations between 

theoretical result and actual result. These 

results will help us in better simulation and 

analysis of the system.  

 

CONCLUSIONS 

We analyzed the jumping robot system 

and the came up with the following 

modifications to increase its jump. 

1. The 4 torsional spring present in the 

system should be replaced with 4 

linear springs. 

2. The designed linear spring is made of 

302 stainless steel wire and have 

dimensions of d = 3.2 mm, D = 

21 mm, Na = 13.72, Lo = 105 mm, K = 

8000 N/m. The spring has been proved 

for infinite life. 

3. The design and analysis of power 

screw shaft was completed and 10 mm 

diameter shaft was found appropriate 

for given system made from AISI 4140 

Q&T (650°C). 

4. The power screw design in shaft was 

modified from single start thread to 3 

start thread with square profile and 

pitch 2 mm. This will make the system 

faster. 

 

We have described the detailed procedure 

for doing the experimental analysis and the 

result from experiments can be further 

incorporated in design and a better 

consonance with reality could be achieved. 
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