A Work Study on Forging Processes and Its Various Defects

*Krishan Kanhaiya, Rahul Kumar, Nitin Jain** Department of Mechanical Engineering, GITAM, Kablana, Haryana, India

ABSTRACT

The aim of this review paper is to investigate the forging defects and mainly to understand different forging processes. A brief description about classification of forging process on the basis of temperature of work piece (hot, cold, and warm forging) and on the basis of arrangement of dies is given. Die design parameters, die material requirements and selection of proper die materials are briefly discussed. Also, briefly described the forging equipments (hammer and press). Components for assortment of forging machine, distinguishing and ordinary use of forging are given. Forging fault, those are continuously occurring are discussed along with their causes and remedies. Then the fish-bone diagram is used to explore the possible causes of defects like unfilling, mismatch and scale pits through a brainstorming session and to determine the causes, which may have the greatest effect. Finally, it is concluded that the forging process gives better quality product than the part produced by any other processes with implementation of preventive actions to reduce the rejection rate.

Keywords: closed die, EDM, forging defects, open die

*Corresponding Author

E-mail: nitinjn8@gmail.com

INTRODUCTION

Forging is defined as a metal working process in which the useful shape of work piece is obtained in solid state by compressive forces applied through the use of dies and tools. Forging process is accomplished by hammering or pressing the metal. It is one of the oldest known metalworking processes with its origin about some thousands of years back. Traditionally, forging was performed by a smith using hammer and anvil. Using hammer and anvil is a coarse form of forging. The smithy or forge has evolved over centuries to become facility with engineered a processes, production equipment, tooling, raw materials and products to meet the demands of modern industry.

Some examples of shapes obtained now-adays by forging process are- Crane hook, connecting rod of an IC engine, spanner, gear blanks, crown wheel, pinion etc. Forging process produces parts of super mechanical properties with minimum waste of material. In this process, the starting material has a relatively simple geometry; this material is plastically deformed in one or more operations into a product of relatively complex configuration. Forging usually requires required in the finished product can be obtained only by a forging process.

Though forging process gives superior quality product compared to other manufacturing processes, there are some defects that are lightly to come if a proper care is not taken in forging process design. Defects can be defined as the paragon that exceed certain limits.

DISCUSSION

Some Important Forging Terms

- (1) Forging die: It may be defined as a complete tool consists of a pair of mating members for producing work by hammer or press. Die pair consists of upper and lower die halves having cavities.
- (2) Billet: A slug cut from rod to be heated and forged.
- (3) Blocker: Preform die or impression, used when part cannot be made in a single operation.
- (4) Cavity: The impression in upper and lower die.
- (5) Draft Angle: The taper on a vertical surface to alleviate the easy removal of the forging from the die or punch. Internal draft angles are larger (70– 100), whereas external draft angles are smaller (30–50).
- (6) Fillet: It is a small radius provided at corners of die cavity to ensure proper and fine-textured flow of material into die cavity. It helps to improve die life by reducing rapid die wear.
- (7) Flash: The excess metal that flows out between the upper and lower dies which is required to complete a desired forging shape.
- (8) Gutter: A slight depression surrounding the cavity in the die to relieve pressure and control flash flow.
- (9) Parting Line: The location on the forging where excess material in the form of flash is allowed to exit from the forging during the forging operation.
- (10) Shrinkage: The contraction that occurs when forging cools.
- (11) Sink: To cut an impression in a die.
- (12) Web: The thin section of metal remaining at bottom of a cavity or slump in a forging. The web may be removed by piercing or machining.

Classification of Forging Processes

In forging, an initially simple part-a billet, is plastically deformed between two dies to obtain the desired final.

Classification Based on Temperature of the Work Piece

(a) Hot forging (most widely used): Forging is carried out at a temperature above the recrystallization temperature of the metal. The recrystallization temperature is characterized as the temperature at which the new grains are formed in the metal. This kind of extreme heat is necessary in avoiding strain hardening of the metal during deformation.

Advantages

High strain rates and hence easy flow of the metal, Recrystallization and recovery are accomplishable, Forces required are less.

Disadvantages

Lubrication is difficult at high temperatures, Oxidation and scaling occur on the work piece, Poor surface finish, Less precise tolerances, Possible warping of the material during the cooling process.

(b) Cold forging: Forging is carried out at or near room temperature (below the recrystallization temp.) of the metal. Carbon and modular alloy steels are most commonly cold-forged. Cold forging is generally preferred when the metal is already a soft, like aluminum. This process is usually less expensive than hot forging and the end commodity requires little or no finishing work Cold forging is also less susceptible to contamination problems, and the final component features a better overall surface finish.

Advantages

Production rates are very high with exceptional die life, improves mechanical properties, less friction between die surface and work piece, lubrication is easy, no oxidation or scaling on the work.

Disadvantages

Residual stress may occur, dense and more powerful equipment is needed, Powerful tooling is required, Tool design and manufacturing are faultfinding.

Journals Pub

(c) Warm forging: The temperature range for the warm forging of steel runs from above room temperature to below the recrystallization temperature. Compared with cold forging, warm forging has the potential benefit is: Reduced tooling loads, reduced press loads, increased steel malleability, elimination of need to normalize prior to forging, and favorable as-forged properties that can eliminate heat treatment. In warm forging, the billet is below the recrystallization heated temperature, up to 700 to 800°C for steels, in order to lower the flow stress and the forging pressures.

Advantages

High production rates, excellent dimensional tolerances and surface finish for forged parts, Significant savings in material.

CLASSIFICATION BASED ON ARRANGEMENTS OF DIES Open-Die Forging

Forging in which the plane dies of simple shape are used to allow the material to freely change in lateral directions of applied load. Figure 1 shows open-die forging operation.

Features

Less dimensional accuracy, Suitable only for simple shapes of work, requires more skill of the operator, usually used for a work before subjecting it to closed-die forging (to give approximate shape), dies are simple and less expensive, it is easy in all the forging operations.

Impression-Die Forging

Forging in which the material is shaped to fill out a die cavity created by the upper and lower die halves. The dies are not fully closed and let the some material to escape as flash. Flash formation builds pressure inside the bulk of the work piece, aiding material flow into unfilled impressions. Requires more complex (more expensive) dies. Figure 2 shows impression-die forging operation.

Fig. 2. Forging operation.

Significance of Flash

Spare metal is taken initially to ensure that die is completely filled with metal to avoid any empty Excess metal is squeezed out of the die cavity as a thin strip of metal, called Flash. A flash gutter is provided to reduce the area of flash. Thin flash increases the flow resistance of the system and builds up the pressure to high values which ensures that all complex shapes of cavity are filled. Flash design is very critical and important step. Extremely thin flash results in very high pressure build up which may lead to breaking of the dies.

Closed-Die Forging

Forging in which the material is fully strained in the cavity created by the upper and lower die halves. It allows more accurately shaped parts to be formed, no flash is formed in this process therefore no waste of material. higher interface pressures required, requires very accurate control of material volume and proper die design. Closed-die forging is a form of impression-die forging, which does not depend on flash formation to achieve complete filling of the die. Material is deformed in a cavity that allows little or no escape of excess material, thus placing greater demands on die design.

Features

Work is rough forged close to final shape by blocking die, work is forged to final shape and dimensions by finishing die, both blocking die and finishing die are machined into the same die block, more number of dies are required depending on the complexity of the job, two die halves close-in and work is deformed under high pressure, high dimensional quality/close control on tolerances, suitable for tangled shapes.

Die Design Parameters

Die design depends on the knowledge of strength and plasticity of work piece material, sensibility of material to the rate of deformation and temperature, frictional features, shape and complexity of work piece, die distortion under high forging loads.

Die Material Requirements

Strength and toughness at increased temperature, tough ability and ability to harden uniformly, resistance to mechanical and thermal shocks, wear resistance to resist attrition wear due to scales present on work piece.

Forging Equipments

Forged components are shaped either by a hammer or press. Forging on the hammer is carried out in a succession of die impressions using repeated blows. The quality of the forging, and the economy and productivity of the hammer process depend upon the tooling and the ability of the operator. In press forging, the stock is usually hit only once in each die impression and the design of each impression becomes more important while operator skill is less critical. The day-andnight development of forging technology requires a sound and primal understanding equipment susceptibility of and characteristics and temperature rate conditions, and it determines the rate of production. The requirements of a given forging process must be compatible with the load, energy, time, and accuracy characteristics of a given forging machine [1].

(1) Forging Hammer

The most ordinary type of forging equipment is the hammer and anvil. The hammer is the least expensive and most versatile type of equipment for generating load and energy to carry out a forging process. This technology is characterized by multiple impact blows between contoured dies. Hammers are primarily used for hot forging. There are basically two types of anvil hammers: Gravity-drop hammers and Power-drop hammers. In a simple gravity-drop hammer, the upper ram is connected to a board (board-drop hammer), a belt (belt-drop hammer), a chain (chain-drop hammer), or a piston (oil-, air-, or steam-lift drop hammer). The ram is elevated to a certain height and then dropped on the stock placed on the anvil. During the down stroke, the ram is accelerated by gravity and builds up the blow energy. The upstroke takes place immediately after the blow. The operation rule of a power-drop hammer is related to

that of an air-drop hammer. In the down stroke, in addition to gravity, the ram is accelerated by steam, cold air, or hot air pressure. In the power-drop hammer, the speed of the ram is increased with air pressure applied on the upper most side of the ram cylinder [1]. Figure 3 shows mechanical board hammer - It is a stroke restricted machine. Repeatedly the board (weight) is raised by friction rolls and is dropped on the die. Its evaluation is in the terms of weight of the ram and energy delivered. Figure 4 shows steam hammer -It utilized steam in a piston and cylinder arrangement. It has greater forging capacity guides the experiments, one computes the main factor effect. These computed effects may be then used to predict the response for any combination of factor treatments, because one assumes that these effects are separable and additive function by using cams, cranks and/or toggles to produce a preset (a predetermined force at a certain location in the stroke) and reproducible stroke. Due to the nature of this type of system, various forces are available at different stroke positions. Mechanical presses are faster than their hydraulic counterparts (up to 50 strokes per minute). Their capacities range from 3 to 160 MN (300 to 18,000 short tons-force). Hydraulic presses use fluid pressure and a piston to generate force. It is a load restricted machine. It has more of squeezing action than hammering action. Hence dies can be smaller and have longer life than with a hammer [2-5].

Fig. 3. Closed die forging.

Selection of Forging Machine

Choice of forging machine depends upon force and energy need, material to be forged (soft material- use press, hard material- use hammers), size-shape and complexness of forging, capability of the work piece material, sensitivity of material to rate of deformation, production rate, dimensional accuracy, maintenance, operating skill level required, noise level, cost.

Peculiars of Forging

Usually involves discrete parts may be done on hot or cold materials, frequently requires additional finishing processes such as heat treating, machining, or cleaning, may be finished at fast or slow deformation rates, may be used for very small or very large parts, improves the physical properties of a part by controlling and refining the flow or grain of the material.

Common Use of Forging

(a) Automotive passenger cars, trucks, buses, trailers, motorcycles and bicycles. (b) Bearings, ball and roller. (c) Electric generation/transmission. power (d) Industrial and commercial machinery and equipments. (e) Hand tools. (f) Industrial tools. (g) Mechanical power transmission equipments. (h) Internal combustion engines. (i) Oil field machinery and equipments. (j) Off-highway, equipment (construction, mining and materials handling). (k) Pipeline fittings. Plumbing fixtures, valves and fittings. Pumps and compressors repairs. (1) Aerospace aircraft engines. (m) Guided missiles and space vehicles, etc.

Forging Defects

When a forge shop begins to experience defects in their process, they should try to find the root cause of the problem, initiate corrective action and implement procedures to prevent its recurrence. A brief description of defects and their remedial methods is given below:

(1) Incomplete forging penetration:

Dendritic ingot structure at the interior of forging is not broken. Actual forging takes place only at the surface.

Cause – Use of light rapid hammer blows. Remedy – To use forging press for full penetration.

(2) Surface cracking:

Cause – Excessive working on the surface and too low temperature.

Remedy – To increase the work temperature.

(3) Cracking at the flash:

This crack penetrates into the interior after flash is trimmed off.

Cause – Very thin flash

Remedy – Increasing flash thickness, relocating the flash to a less critical region of the forging, hot trimming and stress relieving.

(4) Cold shut (fold):

Two surfaces of metal fold against each other without welding completely.

Cause – Sharp corner (less fillet), excessive chilling, high friction

Remedy – Increase fillet radius on the die. (5) Unfilled section

(unfilling/underfilling):

Some section of die cavity not completely filled by the flowing metal.

Cause – Improper design of the forging die or using forging techniques, less raw material, poor heating.

Rectification – Correct die design, correct raw material and correct heating.

(6) Die shift (mismatch): Misalignment of forging at flash line.

Cause – Misalignment of the die halves.

Remedy – Proper alignment of die halves. Make mistake proofing for proper alignment for e.g. provide half notch on upper and lower die so that at the time of alignment notch will match each other.

(7) Scale pits (pit marks):

Irregular depurations on the surface of forging.

Cause – Improper cleaning of the stock used for forging. The oxide and scale get embedded into the finish forging surface.

Remedy – Proper cleaning of the stock prior to forging.

(8) Flakes:

These are basically internal ruptures.

Cause – Improper cooling of forging. Fast cooling causes the outdoor to cool quickly causing internal fractures.

Remedy – Follow proper cooling practices.

Fig. 4. Forging intensifier.

CONCLUSIONS

Since defects causes high rejection rates, it is important to move any process in the direction of eliminating all imperfections as part of an effective continuous improvement program. A good quality program begins with an attitude of making it right the first time. Forging processes are no exception to this [6, 7]. Economically, as well as from a quality perspective, it is better to understand and control the process so as to avoid defects rather than scrapping the defective parts during final inspection [8, 9].

REFERENCES

[1] I. Puertas, C.J. Luis, L. Alvarez. Analysis of the influence of EDM parameters on surface quality, MRR and EW of WC-Co. Public university of Navarre (Spain).

- [2] B.H. Yan, H.C. Tsai, F.Y. Huang. The effect in EDM of a dielectric of a urea solution in water on modifying the surface of titanium, *Int J Mach Tools Manuf.* 2005; 45: 194–200p.
- [3] S.L. Chen, B.H. Yan, F.Y. Huang. Influence of kerosene and distilled water as dielectrics on the electric discharge machining characteristics of Ti– 6A1–4V", *J Mater Process Technol.* 1999; 87: 107–11p.
- [4] C.J. Luis, I. Puretas, G. Villa. Material removal rate & electrode wear study on the EDM of silicon carbide, *J Mater Process Technol.* 2005; 164-164: 889–96p.
- [5] A.A. Khan. Electrode wear & Material Removal Rate during EDM of Aluminum & Mild Steel Using

Copper & Brass Electrodes. London: Springer-Verlag London Limited; 2007.

- [6] P.M. George, B.K. Raghunath, L.M. Manocha, A.M. Warrier. EDM machining of carbon-carbon composite – a Taguchi approach.
- [7] A. Ozgedik, C. Cogan. An experimental investigation of tool wear in electric discharge machining" Received on 07/10/2003.
- [8] K.H. Ho, S.T. Newman. State of the art electrical discharge machining (EDM), *Int J Machine Tools Manuf.* 2003; 43: 1287–300p.
- [9] Y.S. Wong, L.C. Lim, L.C. Lee. Effects of flushing on electro discharge machined surface, *J Mater Process Technol.* 1995; 48: 299– 305p.