Open Access Open Access  Restricted Access Subscription or Fee Access

Analysis and Simulation of Computational Fluent Dynamic on Thermo-Electro-Mechanical Devices

Mausam Kumar Ray, Dharmendra Rathore

Abstract


It is a universal truth that no exponential growth will last forever. In the present scenario, energy is a
vital part of development in environment. As the law of conservation of energy “Energy can neither be
created nor can be destroyed, it can only be transformed from one form to another”. Unfortunately,
any energy policy that produces improvements in the short term is often one that destroys the
environment in the long run. Here a study of conservation is being followed. Thermoelectric devices
are an Electro-mechanical device which converts, heat energy into electrical energy. This waste heat
if recovered can be used for various other applications. The TEM used in heat power output and
system efficiency works as a heat exchanger. Here the device has been engaged into exhaust system
for reuse of heat energy for further use of energy in an automobile or a generator. A model is
developed in Unigraphics NX and updated into ANSYS 16.2 software for this purpose. Fluent
workbench is being engaged for the summation of results. The parameters are set and are simulated in
double precision. The simulation is based on temperature and thermal heat transfer is studied. Copper
is the base material for the simulation, as for combination of high conductivity and economy. The
conductivity is performed at multiple velocities.


Keywords


ANSYS, fluent, temperature, Kelvin, thermal, efficiency

Full Text:

PDF

References


Jaber H, et al. Effect of Exhaust Gases Temperature on the Performance of a Hybrid Heat Recovery System. international conference on technologies and materials for renewable energy, environment and sustainability. TMREES17. Available from: http://www.elsevier.com/locate/procedia 1876–6102. Beirut, Lebanon. Vol. 2017. Energy Procedia 00. Apr 21–24 2017.

Buchmann I. What’s the best battery? 2009 [online]. Available from: http://batteryuniversity.com/ [cited Sep 04, 2015]. Available from: http://batteryuniversity.com/learn/article/whats_the_best_battery.

Hadjipaschalis I, Poullikkas A, Efthimiou V. Overview of current and future energy storage technologies for electric power applications. Renew Sustain Energy Rev. 2009;13(6–7):1513–22. doi: 10.1016/j.rser.2008.09.028. Ind. Appl. Vol. 43(2); 2007. p. 505–12.

Stan A, Swierczynski M, Stroe D, Teodorescu R, Andreasen SJ, Moth K. A comparative study of lithium ion to lead acid batteries for use in UPS applications; 2014.

Bismuth telluride bismuth telluride; 2014 [online] [cited Jul 29, 2014]. Available from: http://www.chemspider.com/Chemical-Structure.11278988.html.

Poudel B, Hao Q, Ma Y, Lan Y, Minnich A, Yu B, Yan X, Wang D, Muto A, Vashaee D, Chen X, Liu J, Dresselhaus MS, Chen G, Ren Z. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science. 2008;320(5876):634–8. doi: 10.1126/science.1156446, PMID 18356488.

Alaoui C. Peltier thermoelectric modules modeling and evaluation. Int J Eng. 2011;5:114–21.

Bobean C, Pavel V. The study and modeling of a thermoelectric generator module 8Th international symposium Advance Topic Electric Engenharia; 2013. p. 1–4, May 2013.

C.M. University; 2003 [online]. The Sun & its energy. Available from: http://environ.andrew.cmu.edu/m3/s2/02sun.shtml [cited Jan 20, 2015]. Available from: http://environ.andrew.cmu.edu/m3/s2/02sun.shtml.

Champier D, Bedecarrats JP, Rivaletto M, Strub F. Thermoelectric power generation from biomass cook stoves. Energy. Feb 2010;35(2):935–42. doi: 10.1016/j.energy.2009.07.015.

Champier D, Bédécarrats JP, Kousksou T, Rivaletto M, Strub F, Pignolet P. Study of a TE (thermoelectric) generator incorporated in a multifunction wood stove. Energy. Mar 2011;36(3):1518–26. doi: 10.1016/j.energy.2011.01.012.

Kraemer D, Poudel B, Feng HP, Caylor JC, Yu B, Yan X, Ma Y, Wang X, Wang D, Muto A, McEnaney K, Chiesa M, Ren Z, Chen G. High-performance flat-panel solar thermoelectric generators with high thermal concentration. Nat Mater. Jul 2011;10(7):532–8. doi: 10.1038/nmat3013, PMID 21532584.

Lashof D, Yeh S. Cleaner and cheaper: using the Clean Air Act to sharply reduce carbon pollution from existing power plants, delivering health, environmental, and economic benefits; 2014 [online]. Available from: http://www.nrdc.org/air/pollution-standards/ [cited Jan 20, 2015]. Available from: http://www.nrdc.org/air/pollution-standards/.

Rowe DM. A high performance thermoelectric solar powered generator. Appl Energy. 1981;8(4):269–73. doi: 10.1016/0306–2619(81)90023–4.

Rowe DM. Thermoelectric harvesting of low temperature natural/waste heat. AIP Conf Proc. 2012;485:485–92.

Rowe DM. Thermoelectrics, an environmentally friendly electrical power. Renew Energy. 1999;16(1–4):1251–6. doi: 10.1016/S0960–1481(98)00512–6.

Rowe DM, Min G. Evaluation of thermoelectric modules for power generation. J Power Sources. 1998;73(2)(2):193–8. doi: 10.1016/S0378–7753(97)02801–2.

Meng F, Chen L, Sun F. A numerical model and comparative investigation of a thermoelectric generator with multi-irreversibilities. Energy. May 2011;36(5):3513–22. doi: 10.1016/j.energy.2011.03.057.

F.S. Inc. Thermal analysis of semiconductor systems, Pap W, 2008.

Rinalde GF, Juanicó LE, Taglialavore E, Gortari S, Molina MG. Development of thermoelectric generators for electrification of isolated rural homes. Int J Hydr Energy. Jun 2010;35(11):5818–22. doi: 10.1016/j.ijhydene.2010.02.093.

Crabtree GW, Lewis NS. Solar energy conversion. Phys Today. 2007;60(3):37–42. doi: 10.1063/1.2718755.

H.A. and S. Bandol. Economic analysis of. Power …, vol IEEE, Trans. 2007;1:654–8.

Chen H, Cong TN, Yang W, Tan C, Li Y, Ding Y. Progress in electrical energy storage system: A critical review. Prog Nat Sci. 2009;19(3):291–312. doi: 10.1016/j.pnsc.2008.07.014.

Available from: http://www.customthermoelectric.com/MaterialProperties.htm; 2014 [online] [cited Jul 29, 2014]. Available from: http://www.customthermoelectric.com/Material

Properties.htm.

Sebitosi AB, Pillay P, Khan MA. An analysis of off grid electrical systems in rural Sub-Saharan Africa. Energy Convers Manag. 2006;47(9–10):1113–23. doi: 10.1016/j.enconman.2005.07.011.

Cernaianu MO, Gontean A. High-accuracy thermoelectrical module model for energy-harvesting systems. IET Circuits Devices Syst. May 2013;7(3):114–23. doi: 10.1049/iet-cds.2012.0227.

Cernaianu MO, Gontean A. Parasitic elements modelling in thermoelectric modules. IET Circuits Devices Syst. Jul 2013;7(4):177–84. doi: 10.1049/iet-cds.2012.0351.

Laprade A, Pearson S, Benczkowski S. Application Note 7532 A New PSPICE Electro-Thermal Subcircuit For Power MOSFETs. Fairchild Semicond. Appl. Note 7534(Jul), pp. 1–16, 2004.

McCarty R. Thermoelectric power generator design for maximum power: its all about ZT. J Electron Mater. Oct 2013;42(7):1504–8. doi: 10.1007/s11664–012–2299–8.

Nuwayhid RY, Shihadeh A, Ghaddar N. Development and testing of a domestic woodstove thermoelectric generator with natural convection cooling. Energy Convers Manag. Jun 2005;46(9–10):1631–43. doi: 10.1016/j.enconman.2004.07.006.

Riffat SB, Ma X. Thermoelectrics: a review of present and potential applications. Appl Therm Eng. Jun 2003;23(8):913–35. doi: 10.1016/S1359–4311(03)00012–7.

Bensaid S, Brignone M, Ziggiotti A, Specchia S. High efficiency Thermo-Electric power generator. Int J Hydr Energy. Jan 2012;37(2):1385–98. doi: 10.1016/j.ijhydene.2011.09.125.

Koh SL, Lim YS. Meeting energy demand in a developing economy without damaging the environment—A case study in Sabah, Malaysia, from technical, environmental and economic perspectives. Energy Policy. Aug 2010;38(8):4719–28. doi: 10.1016/j.enpol.2010.04.044.

Lineykin S, Ben-Yaakov S. Modeling and analysis of thermoelectric modules. IEEE Trans on Ind Applicat. 2007;43(2):505–12. doi: 10.1109/TIA.2006.889813.

Lineykin S, Ben-yaakov S. Modeling and analysis of thermoelectric modules. IEEE Trans Ind Electron. 2005:2019–23.

Lineykin S, Ben-Yaakov S. SPICE compatible equivalent circuit of the energy conversion processes in thermoelectric modules. Electr Electron Eng Isr. 2004 23rd IEEE Conv;2004:346–9.

Ploteau JP, Glouannec P, Noel H. Conception of thermoelectric flux meters for infrared radiation measurements in industrial furnaces. Appl Therm Eng. 2007;27(2–3):674–81. doi: 10.1016/j.applthermaleng.2006.05.010.

Costa PM, Matos Ma. Economic analysis of microgrids including reliability aspects 9th international conference Probabilistic Methods Appl. to Power Syst. PMAPS. Vol. 2006; 2006. p. 1–8.

Paradiso JA, Starner T. Energy scavenging for mobile and wireless electronics. IEEE Pervasive Comput. 2005;4(1):18–27. doi: 10.1109/MPRV.2005.9.

Chavez J, Ortega J. ’SPICE model of thermoelectric elements including thermal effects,’ …, 2000. IMTC. 2000. 2000.

Hensen JLM, Nakhi AE. Fourier and Biot numbers and the accuracy of conduction modelling; 1992.

Lofy J, Bell LE. Thermoelectrics for environmental control in automobiles. Proceedings of the ICT’02 Twenty-First international conference Thermoelectr. Vol. 2002; 2002. p. 471–6.

Tsao J, Lewis N, Crabtree G. ’Solar FAQs,’ US Dep Energy, pp. 1–24, 2006.

Matsubara K. Development of a high efficient thermoelectric stack for a waste exhaust heat recovery of vehicles. Proceedings of the ICT’02 Twenty-First international conference Thermoelectr. Vol. 2002; 2002. p. 418–23.

Suleebka KP. High temperature solar thermoelectric generator. Appl Energy. Jan 1979;5(1):53–9. doi: 10.1016/0306–2619(79)90005–9.

Wu K-H, Hung C-I. Effect of substrate on the spatial resolution of Seebeck coefficient measured on thermoelectric films. Int J Therm Sci. Dec 2010;49(12):2299–308. doi: 10.1016/j.ijthermalsci.2010.08.007.

Chen L, Cao D, Huang Y, Peng FZ. Modeling and power conditioning for thermoelectric generation [PESC rec]. IEEE annu. Power Electron Spec conference; Jun 2008. p. 1098–103.

Maneewan S, Khedari J, Zeghmati B, Hirunlabh J, Eakburanawat J. Investigation on generated power of thermoelectric roof solar collector. Renewable Energy. 2004;29(5):743–52. doi: 10.1016/j.renene.2003.10.005.

Li M, Xu S, Chen Q, Zheng L. Thermoelectric-generator-based DC-DC conversion network for automotive applications. Journal of Elec Materi. 2011;40(5):1136–43. doi: 10.1007/s11664–011–1557–5.

Jones R. ’Energy Poverty: How to make modern energy access universal. Spec. early excerpt World Energy Outlook, no. 2010;Sep:52.

Mirocha A, Dziurdzia P. Improved Electrothermal Model of the Thermoelectric Generator Implemented in SPICE; 2008. p. 317–20.

Juanico LE, Rinalde GF. Comparative analysis of photovoltaic and thermoelectric panels for powering isolated homes. J Renew Sustain. 2009;1(4). doi: 10.1063/1.3180391.

Date A, Date A, Dixon C, Akbarzadeh A. Progress of thermoelectric power generation systems: prospect for small to medium scale power generation. Renew Sustain Energy Rev. May 2014;33:371–81. doi: 10.1016/j.rser.2014.01.081.

Cernaianu M, Cernaianu A. Thermo electrical generator improved model international conference Power …, vol. Vol. 13; 2012. p. 343–8.

Cernaianu M. ’Thermoelectrical energy harvesting system: Modelling, simulation and implementation. (ISETC). 2012 10th. pp. 2–5.

Chen M, Rosendahl LA, Bach I, Condra T, Pedersen JK. ’Transient Behavior Study of Thermoelectric Generator through SPICE Electro-thermal model,’ …, 2006. ICT. ’06. 25th …;2006.

Eswaramoorthy M, Shanmugam S. Techno-economic analysis of a solar thermoelectric power generator for a rural residential house. Vol. 4(10); 2009. p. 1911–9.

Molina MG, Juanicó LE, Rinalde GF. Design of innovative power conditioning system for the grid integration of thermoelectric generators. Int J Hydr Energy. Jul 2012;37(13):10057–63. doi: 10.1016/j.ijhydene.2012.01.177.

Hodes M. Optimal pellet geometries for thermoelectric power generation. IEEE Trans Compon Packag Technol. 2010;33(2):307–18. doi: 10.1109/TCAPT.2009.2039934.

Telkes M. Solar thermoelectric generators. J Appl Phys. 1954;25(6):765–77. doi: 10.1063/1.1721728.

Zebarjadi M, Chen G. Recent advances in thermoelectrics 2011. Int. Electron devices meet., no. 2, pp. 10.1.1–4, Dec. 2011.

Cernaianu M. Dissertation TEG modeling in LTspice 2012.

Gorbachuk N, Sidorko V. Heat capacity and enthalpy of Bi2Si3 and Bi2Te3 in the temperature range 58–1012 K. Powder Metall Met Ceram. 2004;43(437):284–90.

Singamsetti N, Tosunoglu S. A review of rechargeable battery technologies; 2012. p. 6.

Vatcharasathien N, Hirunlabh J, Khedari J, Daguenet M. Design and analysis of solar thermoelectric power generation system. Int J Sustain Energy. Sep 2005;24(3):115–27. doi: 10.1080/14786450500291966.

Loh PC, Zhang L, He S, Gao F. Compact integrated solar energy generation systems IEEE Energy Convers congress Expo. Vol. 2010; 2010. p. 350–6.

Zhang Q, Agbossou A, Feng Z, Cosnier M. Solar micro-energy harvesting based on thermoelectric and latent heat effects. Part II: Experimental analysis. Sens Actuators A. Sep 2010;163(1):284–90. doi: 10.1016/j.sna.2010.06.027.

Amatya R, Ram RJ. Solar thermoelectric generator for micropower applications. J Electron Mater. Apr 2010;39(9):1735–40. doi: 10.1007/s11664–010–1190–8.

Moumouni RJBY, Sajjad A. A system dynamics model for energy planning in Niger. Int J Energy Power Eng. 2014;3(6):308.

Leonov V, Torfs T, Fiorini P, Van Hoof C. Thermoelectric converters of human warmth for self-powered wireless sensor nodes. IEEE Sens J. May 2007;7(5):650–7. doi: 10.1109/JSEN.2007.894917.

Li W, Zhang Z, Wei M. Forecast on Hebei energy consumption based on system dynamics. Cross Strait Quad-Reg Radio …, pp. 2011:1541–3.

Zheng XF, Liu CX, Yan YY, Wang Q. A review of thermoelectrics research—recent developments and potentials for sustainable and renewable energy applications. Renew Sustain Energy Rev. Apr 2014;32:486–503. doi: 10.1016/j.rser.2013.12.053.

Y. and Moumouni and R.J. Baker. Improved SPICE modeling and analysis of a thermoelectric module. IEEE Publications 58th Int. Midwest Symp., no. 1, pp. 1–4, 2015.

Moumouni Y, Baghzouz Y, Boehm RF. Power smoothing of a commercial-size photovoltaic system by an energy storage system. In: Proceedings of the international conference on harmonics and quality of power, ICHQP; 2014.

Moumouni Y, Boehm RF. Utilization of energy storage to buffer PV output during cloud transients. Appl Mech Mater. 2014;705:295–304. doi: 10.4028/www.scientific.net/

AMM.705.295.

US Department of the Interior Bureau of Reclamation Power Resources office. Reclamation: managing water for the west. Hydroelectr. Power. 2005.




DOI: https://doi.org/10.37628/ijcam.v7i1.1292

Refbacks

  • There are currently no refbacks.