Open Access Open Access  Restricted Access Subscription or Fee Access

CFD Study on Thermoelectric Applications for the Utilization of Waste Heat Energies

Tapan Tejaswi, Dharmendra Singh Rathore

Abstract


Commonly, thermoelectric thermal devices are utilized in cooling applications where space and convey ability are significant, however they can be utilized productively in warming applications under the correct conditions. This paper clarifies the beginnings of the thermoelectric thermal devices, its applications in the public eye, and the specialized parts of the gadget. The wide range of appurtenances that the gadget requires will be talked about alongside their downsides. The single-stage information for the cells will be contrasted with the two-stage setup information, and the information assembled for a particular thermoelectric gadget will be contrasted with the producer's distributed information for the various arrangements of the gadget. Energy plays a major role in our life. Everyday a new research comes to recycle the waste energy. In power plant and automobiles lots of thermal and heat energy get released into atmosphere, which is wasted and generates global warming. To enhance this process and for the utilization of energy, Thermo-electrical devices are used. Thermo-electrical devices utilize the thermal energy of the exhaust thermal energy and convert it into electrical energy, further utilized according to the purpose. So, the exhaust material plays a vital role in Thermo-electrical devices. A study is being carried out for this research. Experimental setup needs lots of money, manpower and time. For the optimization of this process a software simulation is being proposed. ANSYS software is adopted for the study. Having multiple velocities of 1 m/s, 2m/s and 3m/s. ANSYS Fluent Workbench is suitable for the study.

Keywords


Thermal devices, heat convection, temperature, numerical simulation, ANSYS

Full Text:

PDF

References


A little information on Peltier junctions. Gateway Electron. Apr 18, 2007.

Elefsiniotis A, Weiss M, Becker T, Schmid U. Efficient power management for energy autonomous wireless sensor nodes for aeronautical applications. J Electron Mater. Feb 2013.

Elefsiniotis A, Kokorakis N, Becker T, Schmid U. A thermoelectric-based energy harvesting module with extended operational temperature range for powering autonomous wireless sensor nodes in aircraft. Sens Actuators A. 2014;206:159–164. doi: 10.1016/j.sna.2013.11.036.

Patyk A. Thermoelectric generators for efficiency improvement of power generation by motor generators Environmental and economic perspectives. Appl Energy. Feb 2013;102:1448–1457. doi: 10.1016/j.apenergy.2012.09.007.

Patyk A. Thermoelectrics: impacts on the environment and sustainability. J Electron Mater. Dec 2010;39(9):2023–2028. doi: 10.1007/s11664–009–1013-y.

Knox AR, Buckle J, Siviter J, Montecucco A, McCulloch E. Megawatt-Scale application of thermoelectric devices in thermal power plants. J Electron Mater. 2013;42(7):1807–13. doi: 10.1007/s11664–012–2434–6.

Ismail BI, Ahmed WH. Thermoelectric power generation using waste-heat energy as an alternative green technology. Recent Pat Electr Eng. 2009;2(807):27–39. doi: 10.2174/1874476110902010027.

Buist RJ. Short course on thermoelectrics. Vol. 1993. Yokohama, Japan: International Thermoelectric Society: The International Thermoelectric Society; Apr 18, 2007. p. 1–8.

Kinsella C, O’Shaughnessy S, Deasy M, Du MY, AJ Robinson. Battery charging considerations in small scale electricity generation from a thermoelectric module. Appl Energy. Feb 2014;114:80–90.

Suter C, Jovanovic ZR, Steinfeld A. A 1kWe thermoelectric stack for geothermal power generation Modeling and geometrical optimization. Appl Energy. Nov 2012;99:379–385. doi: 10.1016/j.apenergy.2012.05.033.

Yu C, Chau KT. Thermoelectric automotive waste heat energy recovery using maximum power point tracking. Energy Convers Manag. Jun 2009;50(6):1506–1512. doi: 10.1016/j.enconman.2009.02.015.

Cheng C-H, Huang S-Y. Development of a non-uniform-current model for predicting transient thermal behavior of thermoelectric coolers. Appl Energy. Dec 2012;100:326–335. doi: 10.1016/j.apenergy.2012.05.063.

Cadoff IB, Miller E. Thermoelectric devices and data. New York: Reinhold Corporation. p. 1–8.

Astrain D, Mart A, Rodríguez A. Improvement of a thermoelectric and vapour compression hybrid refrigerator. Appl Therm Eng. 2012;39:140–150. doi: 10.1016/j.applthermaleng.

01.054.

Champier D, Bédécarrats JP, Kousksou T, Rivaletto M, Strub F, Pignolet P. Study of a TE (thermoelectric) generator incorporated in a multifunction wood stove. Energy. Mar 2011;36(3):1518–1526. doi: 10.1016/j.energy.2011.01.012.

Crane D, LaGrandeur J, Jovovic V, Ranalli M, Adldinger M, Poliquin E, Dean J, Kossakovski D, Mazar B, Maranville C. TEG on-vehicle performance and model validation and what it means for further TEG development. J Electron Mater. Nov 2012.

Rowe DM. Thermoelectrics handbook: macro to Nano. CRC Press; 2005.

Rowe DM, Min G. Evaluation of thermoelectric modules for power generation. J Power Sources. Jun 1998;73(2):193–198. doi: 10.1016/S0378–7753(97)02801–2.

Rowe D. Thermoelectric waste heat recovery as a renewable energy source. Int J Innov Energy Syst Power. 2006;1(1):13–23.

Rowe DM. Thermoelectrics, an environmentally friendly source of electrical power. Renew Energy. 1999;16(1–4):1251–1256. doi: 10.1016/S0960–1481(98)00512–6.

Yang D, Yin H. Energy conversion Efficiency of a novel hybrid solar system for photovoltaic, thermoelectric, and heat utilization. IEEE Trans Energy Convers. Jun 2011;26(2):662–670. doi: 10.1109/TEC.2011.2112363.

Carlson EJ, Strunz K, Otis BP. A 20 mV input boost converter with efficient digital control for thermoelectric energy harvesting. IEEE J Solid State Circuits. Apr 2010;45(4):741–750. doi: 10.1109/JSSC.2010.2042251.

Sandoz-Rosado E, Stevens RJ. Experimental characterization of thermoelectric modules and comparison with theoretical models for power generation. J Electron Mater. Mar 2009;38(7):1239–1244. doi: 10.1007/s11664–009–0744–0.

Egli PH, Hyman SC. Thermoelectricity. J Electrochem Soc. 1961;108(7):35–40. doi: 10.1149/1.2428175.

Frequently Asked Questions. Marlow Industries, Incorp; Apr 18, 2007. Available from: http://www.marlow.com/TechnicalInfo/frequently_asked_questions_faqs.

Liang G, Zhou J, Huang X. Analytical model of parallel thermoelectric generator. Appl Energy. Dec 2011;88(12):5193–5199. doi: 10.1016/j.apenergy.2011.07.041.

Min G, Rowe DM. Experimental evaluation of prototype thermoelectric domestic refrigerators. Appl Energy. 2006;83(2):133–152. doi: 10.1016/j.apenergy.2005.01.002.

Min G, Rowe DM. Symbiotic application of thermoelectric conversion for UID preheating/power generation. Energy Convers Manag. Jan 2002;43(2):221–228. doi: 10.1016/S0196–8904(01)00024–3.

Rinalde G, Juanico L, Taglialavore E, Gortari S, Molina M. Development of thermo-electric generators for electrification of isolated rural homes. International Journal of Hydrogen Energy, vol. 35, no. 11, pp. 5818–5822, 2010.

Kaibe H, Makino K, Kajihara T, Fujimoto S, Hachiuma H. Thermoelectric generating system attached to a carburizing furnace at Komatsu Ltd., Awazu Plant. In: 9th Eur Conference on Thermoelectrics (ECT); 2011. p. 524–527.

Nagayoshi H, Kajikawa T. Mismatch power loss reduction on thermoelectric generator systems using maximum PowerPoint trackers 25th International Conference on Thermoelectrics (ICT); 2006. p. 210–213.

Nagayoshi H, Tokumisu K, Kajikawa T. Evaluation of multi MPPT thermoelectric generator system 26th International Conference on Thermoelectrics (ICT); Jun 2007. p. 318–321.

Han HS, Kim YH, Kim SY, Um S, Hyun JM. Performance measurement and analysis of a thermoelectric power generator. In: 12th Intersoc Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm). IEEE Publications; 2010. p. 1–7.

Takazawa H, Obara H, Okada Y, Kobayashi K, Onishi T, Kajikawa T. Efficiency measurement of thermoelectric modules operating in the temperature difference of up to 550K. In: 25th International Conference on Thermoelectrics (ICT). IEEE Publications; 2006. p. 189–192.

Wu H, Sun K, Chen M, Xing Y. Evaluation of power conditioning architectures for energy production enhancement in thermoelectric generator systems. J Electron Mater. Oct 2014;43(6):1567–73. doi: 10.1007/s11664–013–2795–5.

Wu H, Sun K, Chen M, Chen Z, Xing Y. Hybrid centralized-distributed power conditioning system for thermoelectric generator with high energy Efficiency. In: Energy Convers Congress and Exposition (ECCE), p.p. 4659–4664. IEEE Publications; 2013.

Yu H, Li Y, Shang Y, Su B. Design and investigation of photovoltaic and thermoelectric hybrid power source for wireless sensor networks. In: 3rd IEEE international conference on Nano/Micro Engineered and Molecular Systems; 2008. p. 196–201.

Laird I, Lu DD-C. High step-up DC/DC topology and MPPT algorithm for use with a thermoelectric generator. IEEE Trans Power Electron. 2013;28(7):3147–3157. doi: 10.1109/TPEL.2012.2219393.

Laird I, Lovatt H, Savvides N, Lu D, Agelidis VG. Comparative Study o maximum PowerPoint tracking algorithms for thermoelectric generators. In: Australasian universities power engineering conference (AUPEC’08); 2008.

Vieira JAB, Mota AM. Thermoelectric generator using water gas heater energy for battery charging International Conference on Control Applications, p.p.; 1477–1482, July 2009.

Bird J. Electrical and electronic principles and technology. Routledge; 2010.

Bass JC, Killander A. A stove-top generator for cold areas. In: 14th International Conference on Thermoelectrics; 1996. p. 390–393.

Damaschke JM. Design of a low-input-voltage converter for thermoelectric generator. IEEE Trans Ind Appl. 1997;33(5):1203–1207. doi: 10.1109/28.633797.

Haidar J, Ghojel J. Waste heat recovery from the exhaust of low-power diesel engine using thermoelectric generators. In: 20th International Conference on Thermoelectrics (ICT); 2001. p. 413–418.

Kim J, Kim C. A DC-DC boost converter with variation-tolerant MPPT technique and Efficient ZCS circuit for thermoelectric energy harvesting applications. IEEE Trans Power Electron. 2013;28(8):3827–3833. doi: 10.1109/TPEL.2012.2231098.

Buckle JR, Knox A, Siviter J, Montecucco A. Autonomous underwater vehicle thermoelectric power generation. J Electron Mater. Apr 2013;42(7):2214–2220. doi: 10.1007/s11664–013–2584–1.

Siviter J, Knox A, Buckle J, Montecucco A, McCulloch E. Megawatt scale energy recovery in the Rannkine cycle. In: Energy Convers Congress and Exposition (ECCE). IEEE Publications; 2012. p. 1374–1379.

Fergus JW. Oxide materials for high temperature thermoelectric energy conversion. J Eur Ceram Soc. Mar 2012;32(3):525–540. doi: 10.1016/j.jeurceramsoc.2011.10.007.

Xiao J, Yang T, Li P, Zhai P, Zhang Q. Thermal design and management for performance optimization of solar thermoelectric generator. Appl Energy. May 2012;93:33–38. doi: 10.1016/j.apenergy.2011.06.006.

Meng J-H, Wang X-D, Zhang X-X. Transient modeling and dynamic characteristics of thermoelectric cooler. Appl Energy. Aug 2013;108:340–348. doi: 10.1016/j.apenergy.

03.051.

Jang J-Y, Tsai Y-C, Wu C-W. A study of 3-D numerical simulation and comparison with experimental results on turbulent flow of venting flue gas using thermoelectric generator modules and plate in heat sink. Energy. May 2013;53:270–281. doi: 10.1016/j.energy.2013.03.010.

Biswas K, He J, Blum ID, Wu CI, Hogan TP, Seidman DN, Dravid VP, Kanatzidis MG. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature. Sep 2012;489(7416):414–418. doi: 10.1038/nature11439, PMID 22996556.

Qiu K, Hayden ACS. Development of a novel cascading TPV and TE power generation system. Appl Energy. Mar 2012;91(1):304–308. doi: 10.1016/j.apenergy.2011.09.041.

Sun K, Ni L, Chen M, Wu H, Xing Y, Rosendahl L. Evaluation of high step-up power electronics stages in thermoelectric generator systems. J Electron Mater. Apr 2013;42(7):2157–2164. doi: 10.1007/s11664–013–2557–4.

Anatychuk LI, Havrylyuk MV. Procedure and equipment for measuring parameters of thermoelectric generator modules. J Electron Mater. Mar 2011;40(5):1292–1297. doi: 10.1007/s11664–011–1619–8.

Chen L, Cao D, Yi H, Peng FZ. Modeling and power conditioning for thermoelectric generation. In: Power Electron Spec Conference, p.p. 1098–1103. IEEE Publications; Jun 2008.

Anatychuk LI, Kuz RV, Rozver YY. Efficiency of thermoelectric recuperators of the exhaust gas energy of internal combustion engines. In: 9th Eur Conference on Thermoelectric (ECT); 2011. p. 516–519.

Rauscher L, Fujimoto S, Kaibe HT, Sano S. Efficiency determination and general characterization of thermoelectric generators using an absolute measurement of the heat flow. Meas Sci Technol. May 2005;16(5):1054–1060. doi: 10.1088/0957–0233/16/5/002.

Lai H, Pan Y, Chen J. Optimum design of the performance parameters of a two-stage combined semiconductor thermoelectric heat pump. Semicond Sci Technol. Apr 18, 2004;19(1) (2004):17–22. doi: 10.1088/0268–1242/19/1/003.

Alata M, Al-Nimr MA, Naji MM. Transient behavior of a thermoelectric device under the hyperbolic heat conduction model. Int J Thermophys. 2003;24(6):1753–1768. doi: 10.1023/B:IJOT.0000004103.26293.0c.

Brignone M, Ziggiotti A. Impact of novel thermoelectric materials on automotive applications. In: 9th Eur Conference on Thermoelectrics (ECT); 2011. p. 493–496.

Brignone M, Ziggiotti A, Repetto P, Lambertini VG, Perlo P. Generator of electric energy based on the thermoelectric effect; 2008.

Chen M, Lund H, Rosendahl LA, Condra TJ. Energy efficiency analysis and impact evaluation of the application of thermoelectric power cycle to todays. Appl Energy. Apr 2010;87(4):1231–1238. doi: 10.1016/j.apenergy.2009.06.009.

Chen M, Rosendahl LA, Condra TJ, Pedersen JK. Numerical modeling of thermoelectric generators with Varying material properties in a circuit simulator. IEEE Trans Energy Convers. Mar 2009;24(1):112–124. doi: 10.1109/TEC.2008.2005310.

Ferrari M, Ferrari V, Guizzetti M, Marioli D, Taroni A. Characterization of thermoelectric modules for powering autonomous sensors. In: Instrumentation and measurement technology conference (IMTC); 2007. p. 1–6.

Molina M, Juanico L, Rinalde G, Taglialavore E, Gortari S. Design of improved controller for thermoelectric generator used in distributed generation. International Journal of Hydrogen Energy, vol. 35, no. 11, pp. 5968–5973, 2010.

Naji M, M. Alata, and M.A. Al-Nimr. Transient behaviour of a thermoelectric device. Proc Inst Mech Eng A J Power Energy. 2003;217:615–621.

Orellana M, Petibon S, Estibals B, Alonso C. Four Switch Buck-Boost Converter for Photovoltaic DC-DC power applications. In: 36th Annual Conference on IEEE Industrial Electronics Society (IECON), no. 1. IEEE Publications; Nov 2010. p. 469–474.

Vitelli M. On the necessity of joint adoption of both Distributed Maximum PowerPoint Tracking and Central Maximum PowerPoint Tracking in PV systems. Prog Photovolt: Res Appl. Jul 2014;22(3):283–99. doi: 10.1002/pip.2256.

Zebarjadi M, Esfarjani K, Dresselhaus MS, Ren ZF, Chen G. Perspectives on thermo-electrics: from fundamentals to device applications. Energy Environ Sci. 2012;5(1):5147–62. doi: 10.1039/C1EE02497C.

Mathiprakasam B, Patrick Heenan. AIP Conference Proceedings 316. USA: AIP P, 1995. 135–165.

Fernandez-Yaneza P, Armasa O, Azael Capetillob, Simón Martínez-Martínezc. Thermal analysis of a thermoelectric generator for light-duty diesel engines Received 8 March. 2018; Received in revised form; Accepted 27 May 2018;2018:0306–2619.

Peltier device information directory Thermoelectric Design LLC; Apr 18, 2007. Available from: http://www.peltier-info.com/info.html.

Luo Q, Tang G, Liu Z, Wang J. A novel water heater integrating thermoelectric heat pump with separating thermosiphon. Appl Therm Eng. Oct 2005;25(14–15):2193–2203. doi: 10.1016/j.applthermaleng.2005.01.013.

Pilawa-Podgurski RCN, Perreault DJ. Submodule integrated distributed maximum PowerPoint tracking for solar photovoltaic applications. IEEE Trans Power Electronics. 2013;28(6):2957–2967. doi: 10.1109/TPEL.2012.2220861.

Decher R. Direct Energy Conversion: fundamentals of electric power production. Oxford University Press; 1997.

Simons RE, Chu RC. Application of thermoelectric cooling to electronic equipment: a review and analysis. In: 16th SEMI-THERM Symposium. IEEE Publications; 2000. p. 1–9.

Mehta RJ, Zhang Y, Karthik C, Singh B, Siegel RW, Borca-Tasciuc T, Ramanath G. A new class of doped nanobulk high-figure-of-merit thermoelectrics by scalable bottom-up assembly. Nat Mater. Mar 2012;11(3):233–40. doi: 10.1038/nmat3213, PMID 22231596.

Hester RK, Thornton C, Dhople S, Zhao Z, Sridhar N, Freeman D. High efficiency wide load range buck/boost/bridge photovoltaic microconverter. In: 26th Appl Power Electron Conference and Exposition (APEC). IEEE Publications; Mar 2011. p. 309–313.

Nuwayhid R, Shihadeh A, Ghaddar N. Development and testing of a domestic wood-stove thermoelectric generator with natural convection cooling. Energy Convers Manag. Jun 2004;46:1631–1643.

Kim R-Y, Lai J-S. A seamless mode transfer maximum PowerPoint tracking controller for thermoelectric generator applications. IEEE Trans Power Electron. 2008;23(5):2310–2318. doi: 10.1109/TPEL.2008.2001904.

Rowe DM, CRC. Handbook of thermoelectrics. 10th ed. New York: CRC Press. p. 1995. 143–155.

Lineykin S, Ben-Yaakov S. Modeling and analysis of thermoelectric modules. IEEE Trans Ind Appl. 2007;43(2):505–512. doi: 10.1109/TIA.2006.889813.

O’Shaughnessy SM, Deasy MJ, Kinsella CE, Doyle JV, Robinson AJ. Small scale electricity generation from a portable biomass cookstove: prototype design and preliminary results. Appl Energy. Feb 2013;102:374–385. doi: 10.1016/j.apenergy.2012.07.032.

Poshtkouhi S, Palaniappan V, Fard M, Trescases O. A general approach for quantifying the Benefit of distributed power electronics for fine grained MPPT in photovoltaic applications using 3-D modeling. IEEE Trans Power Electron. 2012;27(11):4656–4666. doi: 10.1109/TPEL.

2173353.

Risse S, Zellbeck H. Close-coupled exhaust gas energy recovery in a gasoline engine. Res Therm Manag. 2013;74(1):54–61. doi: 10.1007/s38313–013–0010-y.

Furue T, Hayashida T, Imaizumi Y, Inoue T, Nagao K, Nagai A, Fujii I, Sakurai T. Case study on thermoelectric generation system utilizing the exhaust gas of internal-combustion power plant 17th International Conference on Thermoelectrics (ICT), no. 1. p. 473–478,1998.

Kyono T, Suzuki RO, Ono K. Conversion of unused heat energy to electricity by means of thermoelectric generation in condenser. IEEE Trans Energy Convers. Jun 2003;18(2):330–334. doi: 10.1109/TEC.2003.811721.

Thermoelectric cooling with Peltier cells. JC Electron. Apr 18, 2007.

Sark WV. Feasibility of photovoltaic Thermoelectric hybrid modules. Appl Energy. Aug 2011;88(8):2785–2790. doi: 10.1016/j.apenergy.2011.02.008.

Wang W, Cionca V, Wang N, Hayes M, O’Flynn B, O’Mathuna C. Thermoelectric energy harvesting for building energy management wireless sensor networks. Int J Distrib Sens Netw. 2013;2013.

Ramadass YK, Chandrakasan AP. A battery-less thermoelectric energy harvesting interface circuit with 35-mV startup voltage. IEEE J Solid State Circuits. Jan 2011;46(1):333–341. doi: 10.1109/JSSC.2010.2074090.

Wang Y, Dai C, Wang S. Theoretical analysis of a thermoelectric generator using exhaust gas of vehicles as heat source. Appl Energy. Dec 2013;112:1171–1180. doi: 10.1016/j.apenergy.

01.018.




DOI: https://doi.org/10.37628/ijcam.v7i1.1288

Refbacks

  • There are currently no refbacks.