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Abstract 

For scene reconstruction, shape from focus (SFF) is a popular technique in the field of 

computer vision. This is the fact that the SFF technique is based the focus levels of the pixels 

of the image preserves depth information. Conventionally, when there is a relative motion 

between the camera and the scene, SFF is implemented by using telecentric lenses, which 

avoid parallax effects. This becomes the chief component for the limitation of the SFF 

technique to very small objects generally in the millimeter scale. In the current research 

work, a new SFF-inspired algorithm is developed that uses in a wide angle lens in place of a 

telecentric lens. This extends the range of object that the system can deal with, though severe 

magnification changes occur when a stack of images are acquired with respect to the scene. 

By using a variable window approach the problem is addressed, when focus measures are 

computed. The paper presents significant results of performance evaluation of five different 

focus measures based on the first order image derivative, the image gradient. The evaluation 

is carried out based on two different performance evaluation criteria namely root mean 

square error and computation time. Under various operating conditions such as different 

spatial resolution, window size, contrast changes, gray level saturation and camera noise, the 

analysis of the gradient-based measures are carried out. 
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INTRODUCTION 

In many fields, computer vision has been 

increasingly found its application, such as 

automated inspection, robot guidance, 

entertainment, and other scientific and 

industrial applications. Over three decades 

in the field of 3-D computer vision, scene 

reconstruction has been the topic of 

interest. Many techniques viz., passive, 

active and hybrid techniques have evolved 

over the years. In passive methods, 3-D 

reconstruction aims at estimating the 3-D 

surface geometry with one or more passive 

cameras that record the intensity 

information of the scene, while active 

vision technique reconstruct a scene by 

estimating the depth by deliberately 

releasing some form of energy into the 

scene which was unless not present in the 

scene. Hybrid methods, like the structured 

light technique, combine the advantages of 

active and passive vision techniques by 

throwing additional light (patterns) on the 

scene that is imaged by a passive camera. 

Generally, the techniques are grouped 

together under the name shape-from-X. 

mailto:senthilnathan.r@ktr.srmuniv.ac.in


Performance Analysis of Gradient-Based Focus Measures in SFF Scenario                            Senthilnathan et al. 

 

 

IJCAM (2016) 1–12 © JournalsPub 2016. All Rights Reserved                                                                  Page 2 

Although X denotes the cue used for the 

scene reconstruction that could be stereo, 

motion, shading, focus, defocus, texture 

etc. Apart from these methods, shape from 

focus (SFF) 
[1]

 and shape from defocus 

(SFD) used multiple images of the scene 

taken with different focuses. The 

difference between the methods come in 

the form of SFD,
[2]

 generally, requires one 

sharp image in the foreground and 

background, respectively. The distance of 

all the points that lie between foreground 

and background is interpolated by a 

sharpness measure (actually measures the 

degree of unsharpness). Unlike the SFD 

method, SFF usaully requires more 

number of images along the dissimilar 

focal stacks of the lens.  

 

Generally it makes that the SFF method is 

computationally expensive as compared to 

SFD, although this drawback pays in a 

way that the precision of SFF is better than 

SFD. The SFF techniques have been 

successfully used in various areas, such as 

industrial inspection, medical diagnostics 

involving microscopic imaging or imaging 

of small objects.
[3]

 The SFF techniques 

demanded images of different scene with 

different focus levels that can obtain by 

translating the camera or the object or by 

changing the focus setting of the lens. SFF 

is highly sensitive to parallax, and this is 

one of the inherent limitations of the SFF 

method of reconstruction of the scene. In 

the recent years by means of novel image 

processing procedures, many authors have 

attempted to extend the applicability of 

SFF techniques.
[4]

 

 

The attempts that is made for increasing 

the applicability of the SFF technique is 

purely for the complete scene 

reconstruction rather than using some 

approximate information from SFF with an 

imaging system prone to parallax errors. In 

this study, a small part of the research 

work that deals with the development of an 

algorithm inspired by conventional SFF, 

which may be used for the scenario that 

involved parallax. The reported study 

involved the evaluation of various focus 

measures based on image gradient. 

 

IMAGE FORMATION MODEL 

All types of 3-D applications, it may be 3-

D pose estimation or reconstruction, rely 

heavily on the geometry of the imaging 

process. In fact image formation process 

dictates the information that could be 

extracted from one or more images. The 

process of image formation is itself a 

projective geometry engine.  

 

In SFF, by measuring the distance of well-

focused position of every object point 

from the camera lens, the objective is to 

find out the depth. The 3-D geometry of 

the scene can be recovered, when distances 

for all the points are known. 

 

Blur Model 

In some fundamental characteristics of 

image formation and focusing, a simple 

camera model consisting of thin lens and 

an image plane can be used to derive. A 

defocused pixel is surrounded by a blur 

circle whose diameter depends on the lens 

setting with respect to the scene. 

According to geometric optics, the 

intensity within the blur circle is 

approximately constant. However owing to 

aberrations, diffractions, and other 

undesirable effects, a two-dimensional 

Gaussian model has been suggested as an 

alternative model: 

h (x, y) = 
1

2πσ2 e
−1

     2 
x2+y2

σ2           Eq. (1) 

 

where 𝜎 is the spread parameter such that 𝜎 

= k.d for k > 0. Here, k is the 

proportionality constant that is a 

characteristic of the camera used for 

imaging.  

 

The value of k can be found from 

calibrating the camera. The blur model is 

often referred as point spread function 

(PSF). Figure 1 illustrates the PSF 

behavior which varies as two-dimensional 
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Gaussian along the different focal planes 

in the focal stack. 

 

 
Fig. 1: Two-Dimensional Gaussian Focus 

Model. 

 

SHAPE FROM FOCUS 

In Figure 2, a schematic diagram 

illustrating the methodology of the SFF is 

shown.
[4]

 Initially, a 3-D object was kept in 

the reference plane and translated along 

the optical axis, in a fixed and finite 

number of discrete steps denoted by Δd. 

This is a disadvantage in SFF, as the 

method inherently suffers from a finite 

determination error contributed by Δd. The 

optics of the camera defines a focused 

plane, such that all the points on it are in 

their best sharpness. The distance of the 

focused plane from the camera was ωd.  

The reference image was at a distance of dr 

away from the focused plane. The distance 

between the translating stage and the 

reference plane was dk. All the distances 

were known before making any depth 

estimate from the system. As the stage 

moves towards the camera, a point (x, y) 

on the 3-D objective increasingly comes 

into focus, and the best perceptiveness is 

attained when the distance between the 

reference plane and translating stage is dk 

= 
C
z.  

 

SFF basically attempts to estimate this 
C
z 

for every pixel in the image. In order to 

achieve this, for every image in the 

arrangement, the focus level of every pixel 

is measured in a local window. The focus 

measure is essentially a mathematical 

operator, which measures the high spatial 

occurrence contented in the image. 
 

 
Fig. 2: Schematic of Shape from Focus. 

 

At every pixel, the image frame that gives 

the maximum measurement of focus is 

identified. Accordingto the knowledge of 

the camera parameters, and a identified 

focus function, the distance of the sight 

point regarding to each pixel may be 

computed. Other features for error in the 

SFF comprise edge bleeding, sensor noise 

and loss of window registration 
[4]

. Besides 

the given errors, the SFF has a few 

different limitations. In the case of visually 

standardized scenes, the depth estimate is 

not possible directly, since the spatial 

frequency content is very less for a 

standardized texture. This may be 

observed as an analogy to the stereo 

visualization, in the sense that rich texture 

content is a must to identify the 

corresponding points in stereo 

visualization.  

Besides these limitations, the SFF is also a 

comparatively time-taking process, mainly 

contributed by the basic need for the 

acquisition of a sequence of images. 

Although more number of images will 

decrease the determination error, a 

minimum of 20 images is a must to have 

any reasonable estimate. 
[5]
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Experimental Setup 

The photograph of the experimental setup 

is shown in Figure 3. 

 

 
Fig. 3. Experimental setup. 

 

The images were taken on the go and 

hence a simple DC motor was used for the 

purpose. The various specifications of the 

imaging system are shown in Table 1. 

 

Table 1: System Specifications. 
Parameter Specification 

Light source White LED area light 

Illuminance 160 lux 

Lighting Technique Partially diffused bright field 

incident lighting 

Lens type Fixed focal length prime lens 

Focal length & f# 16 mm, 1.3 

Camera make and 

Model 

interface 

Allied Vision Technologies 

Guppy F033b 

IEEE 1394a – 400 Mb/s, 1 port 

Computer Interface PCI – IEEE 1394a 

Resolution 640×480 

Aspect ratio 4:3 

Sensor Sony ICX424 

Sensor type CCD progressive, Monochrome 

Operating frame 

Rate 

45 frames per second (fps) 

Mode of operation Mono8 mode 

Trigger type Software trigger 

Image acquisition 

Time 

180 ms per image 

Processor Intel Core i5, 2.5 GHz Quad Core 

Memory  4 GB, 1300 MHz primary 

memory 

 

Focus Measure 

The focus measure is essentially a 

mathematical function that gives a 

measure of the concentration of the image 

indirectly, by calculating the contrast of 

the image. It is usaully computed in a 

small square window nearby the pixels in 

the image. A high value for the focus 

measure directs a severely focused area in 

the image, and a low value indicates 

indistinct regions. 

  

Gradient-Based Focus Measures 

The first derivative of the image is termed 

as the gradient of the image as it denotes 

the difference in the grey level in the 

image. The algorithms presented under 

this category follow the assumption, that 

the local difference would be large for the 

focused regions in an image as compared 

to a defocused region in an image.  

 

The Gaussian derivative was proposed by 

Geusebroek et al. 
[6]

 for autofocus in 

microscopy, based on the first order 

Gaussian derivative given in the following 

equation: 

 

FGD = 

2 2

( , )

( ) ( )x y

x y

I I  
            Eq. (2) 

 

Where, x  and y are the partial derivatives 

of the Gaussian function ( , , )x y   along the 

x and y dimensions of the image, 

respectively. FGD is the focus measure for 

a pixel I(x, y) computed in a neighborhood 

Ω. The Gaussian function ( , , )x y    is given 

by,  
2 2

2 2

1
( , , ) exp

2 2

x y
x y 

 

 
   

              Eq. (3) 

 

The value of σ is chosen, such that for a 

neighborhood of size W×W, a total of five 

σs are contained along W. The first 

derivative of the image in the horizontal 

direction is a simple measure of its degree 

of focus, generally expressed as a measure, 

called thresholder gradient given by, 

( , ) ( , )

( , 1) ( , )TG
i j x y

I i j I i jF T


  
        Eq. (4) 

 

The performance of this measure depends 

on the value used for T. For the sake of 
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generality, no threshold has been 

considered in the current study. Many 

alternative definitions for this focus 

measure are found in the literature, which 

considers both the horizontal and vertical 

image derivatives either by addition 
[7]

 or 

the selection of the maximum value. 
[8]

 

 

The first derivative is squared in order to 

increase the influence of the larger value 

of the image gradient. This expression is 

used as a focus measure, which is known 

as the squared gradient 
[9]

 as given below: 
2

( , ) ( , )

( , 1) ( , )SG
i j x y

I i j I i jF T


  
     Eq. 

(5) 

 

A popular focus measure based on the 

gradient of the image is presented in many 

computer vision literature related to SFF, 

called the Tenengrad measure
[10]

. The 

measure is defined as,   
2 2

( , ) ( , )

( , ) ( , )
x yT

i j x y

G i j G i jF


 
            Eq. (6) 

 

Where, Gx and Gy are the image gradients 

along the x and y dimensions, respectively. 

The gradients are computed by convolving 

the image I with the Sobel operator often 

used in edge detection. The variance of the 

image gradient may be used as a focus 

measure, termed as Tenengrad variance
[11]

. 

This measure is popularly used for 

autofocus, though it may even be applied 

to SFF. The measure is defined as, 
2

( , ) ( , )

( ( , ) )TV

i j x y

F G i j G


 
                    Eq. (7) 

 

Where, G  is the mean value of the gradient 

given by 
2 2

x yG G G 
 within the 

neighborhood Ω. 

 

PROPOSED SFF-INSPIRED 

ALGORITHM 

The following part of the paper presents 

the planned SFF-inspired algorithm, which 

procedures the central theme of the thesis. 

First a set of feature points present across 

the stack of images was detected using 

SURF feature detector. The stack suffered 

from combined variations in magnification 

and focus due to the related motion 

between the scene and the camera. The 

focus measurement of only those specific 

pixels was computed. This is different 

from the straight SFF method, in which the 

focus measurement is computed of all the 

pixels in all the images in the focal stack. 

Since in the current study, there is a finite 

SDPM, focus measures cannot be directly 

applied to all the images in a straight 

manner.  

 

Conventional SFF uses a focus function, 

such as a Gaussian distribution, and 

incorporates the computed focus measures 

to find correct depth estimates. Such a 

model is suitable only when a tele-centric 

lens is used. This is true, since in the 

conventional SFF the depth of field is very 

limited, and no magnification changes 

happen because of the relatited motion 

between the scene and the camera.  

 

In this current study, since a wide angle 

lens is used with a higher DOF, in order to 

complete a whole Gaussian distribution, 

large camera motion would be essential. 

Particularly low magnification bases the 

spatial resolution of the image to convert 

too poor for any measurements probable 

from the images. Due to these reasons, a 

coarse method of depth estimation was 

assumed for this study. The algorithm may 

be summarized as follows: 

1. The initial location of the camera from 

the measure plane is identified a priori 

as sm, where, m = 1 for the initial 

location of the camera. 

2. Accumulate the image sequences 

acquired at each step m where the 

stand-off distance (sm) increases in 

steps of Δd. 
3. Measure focus, Fm for each of the 

SURF feature points, across the stack 
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at each step whose correspondences 

are matched using the SSD metric.  

4. Find the step number m where the 

focus measurement is the maximum of 

a point (x, y), such that Fm = Fmax, 

where Fmax is the maximum value of 

the focus measure for a particular 

pixel.  

5. To assign the value of the distance of 

the camera signal as the height of the 

objective relating to the particular 

pixel, such that the height of the scene 

point h  = m Δd. 

6. Once the height of a point is computed, 

the depth of the point 
C
z may be 

computed as 
C
z = s1 – h . 

 

This algorithm, as may be perceived, gives 

only a rough estimation of the depth. The 

performance of the algorithm is straight 

dependent on the collection of Δd. Lower 

values of Δd give better correctness, 

although there is always a nonzero 

determination error.  

 

Interestingly, at times the estimated depth 

becomes equivalent to the real depth, 

dependent on the specific scene point in 

consideration. Apart from this, the depth 

error may be zero, whereas the structure as 

a whole suffers from a nonzero resolution 

error. This behavior may be observed in 

the results of the evaluation presented in 

the next section of the chapter. 

 

Window Size 

The size of the window about which the 

focus measurement is computed, is a 

dynamic parameter in the SFF method. 

Usually, the window size must be as small 

as probable to obtain accurate results. 

When the size of the window is large, a 

large neighborhood is included to compute 

the focus.  

 

If the deepness of the scene relating to 

different points in the window differs, it 

may direct to averaging of dissimilar focus 

levels produced by dissimilar depths of the 

scene points. Many authors have suggested 

a smaller-sized window, particularly a 5×5 

window, to be optimal. Window sizes 

lower than 5×5 may result in errors caused 

by random noises in grey levels.  Larger 

mask sizes would result in averaging 

errors. In the current study, since the 

images suffered from magnification 

changes, a variable window size approach 

was developed. According to this method, 

the window size applied to a particular 

frame was scaled by the magnification 

factor corresponding to that frame. This 

means that in the current scenario, the 

window sizes would be reducing, starting 

from the first frame to the 15
th

 image in 

the focal stack. Larger window sizes offer 

better results, but lead to averaging errors.  

 

It is justified, since the current study which 

uses the SFF-inspired algorithm only to 

get a coarse and sparse depth estimation. 

This issue may be considered as a 

drawback of the proposed method, as it 

inherently suffers from slightly higher 

averaging errors as compared to the 

conventional SFF. 

 

EVALUATION OF FOCUS 

MEASURES 

A typical focus measure should satisfy 

these requirements. 
[12]

 

1) Independent of the image content; 

2) Monotonic with respect to blur; 

3) The focus measure must be 

unimodal, i.e., it must have one and 

only one maximum value; 

4) Large variation in value with 

respect to the degree of blurring; 

5) Minimal computation complexity; 

6) Robust to noise. 

 

Operating Conditions 

The focus measures were evaluated under 

different operating conditions namely, 

different spatial resolutions, camera noise, 

gray level saturation and contrast. Figure 4 

shows the stacks of three different spatial 

resolutions and the first image in each 

stack. The distances between the object 
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and the measurement plane in the three 

cases were 30, 50 and 84 mm, 

respectively. The three cases were 

indicated as spatial resolution 1, 2 and 3, 

respectively. 

 

 

 
Fig. 4: Different Spatial Resolutions Considered for Evaluation. 

 
 

 

Out of various camera noises that may 

corrupt an image acquired from a CCD 

sensor, the significant noise sources may 

be grouped as irradiance-dependent and 

irradiance-independent sources. 
[12]

 The 

noises may be modelled as follows: 

( )noise s c qI F I n n n   
            Eq. (8) 
 

 
Fig. 5: Different Noise Levels. 

Where, Inoise is the image that is obtained 

after adding the noise components to the 

original image I. The parameter F in the 

above equation is the camera response 

function, ns is the irradiance-dependent 

noise component, nc is the irradiance-

independent noise component, and nq is 

the quantization and amplification noise. 

The noise components are basically 

Gaussian white noise with zero mean, and 

the variances for ns and nc are Var (ns) = I⋅ 
σs

2
 and Var (nc) = σc

2
, respectively. The 

feature detectors and match metrics were 

evaluated for three different levels of 

noise, namely, for σs = σc = 0.0005, σs = σc 

= 0.001 and σs = σc = 0.002. Figure 5 

shows a magnified view of a small portion 

in the image (highlighted in red color) 

which was subjected to different levels of 

noise corruption. 

 

Image contrast is an important factor that 

affects the performance of the algorithms, 

related to feature detection and matching. 

In the current study, the contrast of the 

original images was reduced to different 

levels to analyze the robustness of the 

detectors in such a scenario. The contrasts 

of the images were reduced by 

compressing the histogram of the 

respective images. Three different set of 

points were chosen, to achieve 13%, 26% 

and 39% contrast reduction, with reference 

to the original images. Figure 6 shows the 

first image of the focal stack for different 

contrast levels and their corresponding 

grey level histogram. 

 

In this research, image saturation has been 

evaluated by adding a constant offset to 

the original image, as presented in the 

equation below: 
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Isat = I + S                      Eq. (9) 

Where, Isat is the saturated image obtained 

by adding a constant offset S to the 

original image I. In the current study, three 

different offsets, namely, 25, 51, 77 were 

added to the images, which may be 

considered as 10%, 20% and 30% 

saturation, respectively, for an 8-bit 

dynamic range. Figure 7 shows the sample 

images subjected to various levels of 

saturation considered for evaluation. 

 

 
Fig. 6: Contrast Reduction. 

 

 
Fig. 7: Grey Level Saturation. 

 

Evaluation Criteria 

In the current research, two criteria were 

used for the evaluation of the focus 

measures under different operating 

conditions, namely, the execution time of 

the focus measures, and the Root Mean 

Square Error (RMSE). The RMSE is 

normalized by the number of pixels in the 

image and the number of steps of image 

acquisition. The normalized RMSE is 

defined as follows:  

 

2

( , )

1
( ( , ) ( , ))

.

T

i j

G i j Z i j
MN

RMSE
No of Steps







             Eq. (10) 

 

In the above equation, N and M are the 

number of pixels in the horizontal and 

vertical dimensions of the image. GT (i, j) 

is the ground truth information about the 

actual depth of a point (i, j) in the scene,  

and Z (i, j) is the estimated depth of the 

scene obtained from a particular focus 

measure at that point. The values of GT (i, 

j) are found, based on the physical 

measurements of the object’s dimensions, 

with an uncertainty of 1 mm. The 

execution time was calculated by software 

means in MATLAB, which gives an 

approximate estimate of the time taken for 

the execution of a set of functions. In order 

to reduce error, the execution time was 
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averaged from 20 trials for the same 

function’s execution, and also all other 

application software was prevented from 

running. 

 

RESULTS AND DISCUSSION 

The following figures show the results of 

RMSE for various operating conditions as 

shown in Figure 8. 

 

 
(i) RMSE for Spatial Resolution 1. 

 

 
(ii) RMSE for Spatial Resolution 2. 

 

 
(iii) RMSE for Spatial Resolution 3. 

 
(iv) RMSE for Camera Noise Level 1. 
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(iv) RMSE for Camera Noise Level 2. 

 

 
(v) RMSE for Camera Noise Level 3. 

 

 
(vi) RMSE for 13% Contrast Reduction. 

 

 
(vii) RMSE for 26% Contrast Reduction. 
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(viii) RMSE for 39% Contrast Reduction. 

 

 
(ix) RMSE for 10% Saturation. 

 

 
(x) RMSE for 20% Saturation. 

 

 
(xii) RMSE for 30% Saturation. 

Fig. 8: Results of RMSE for Various Operating Conditions. 

 

Table 2 shows the average execution time 

for the various focus measures for a single 

point computed around a window, whose 

initial size is 21×21. Since, the execution 

time for a larger window takes more time, 

as compared to a smaller window; hence, 

evaluating in the worst case scenario. 

 

Table 2: Average Computation Time. 
Focus Measure Average Computation 

Time (msec) 

Gaussian derivative 1.885 

Threshold gradient 0.206 

Squared gradient 0.192 

Tenengrad 1.355 

Tenengrad variance 1.422 
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The RMSE increases with increase in 

contrast reduction and saturation. The 

Gaussian derivative and squared gradient 

gave the least RMSE for most of the cases 

in the category of gradient-based 

measures. Higher window sizes returned 

lower RMSE. This is mainly due to the 

larger neighborhood of focus measure 

which makes the measurement robust (at 

the cost of higher computational time) as 

compared to the noise measurements 

obtained from smaller masks. Selection of 

a unique size is subjected to the trade off 

and a window size of 15×15 is chosen to 

be the candidate window size for all the 

focus measurement purpose. The results 

presented in this paper may be used to 

select the right focus measure for the 

proposed SFF-inspired algorithm. 
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