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Abstract 

Determination of robot heading angle is imperative in mobile robot navigation and 

localization. The raw sensor data from MEMS IMUs are noisy and prone to drifting. This 

paper presents a methodology for constructing an optimum estimate for the heading angle by 

employing two filters—Savitzky-Golay and Kalman filter to fuse magnetometer and 

gyroscope data. For the evaluation of the proposed method, a mobile robot was constructed 

with a control board consisting of MEMS IMUs and Arduino controller. The experimental 

results illustrate the performance of the filters for noisy sensor measures. 
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INTRODUCTION  

Localization and navigation are obligatory 

for mobile robots. Localization consists of 

the determination of the azimuth 

orientation of the robot and its position in 

a given reference frame. The best method 

to determine the heading angle is from the 

compass which measures from the 

magnetic north of the Earth
[1, 2]

. But the 

performance characteristics of the MEMS 

magnetometers and gyroscopes are limited 

by error sources. To eliminate these errors, 

filtering techniques are required. Various 

methods are currently used to estimate the 

robot heading angle from MEMS sensors. 

Robot heading can be processed by fusing 

gyroscopes and odometric sensors using 

constrained Kalman filter
[3]

. Encoder and 

gyroscope are also fused in dead reckoning 

navigation of autonomous robots using 

indirect Kalman filter
[4]

. Other variations 

of the Kalman filter used in sensor fusion 

for robot localizations include, enhanced 

particle Kalman filter (EPKF)
[5]

, extended 

Kalman filter (EFK), iterated extended 

Kalman filter (IEKF)
[6]

, federated Kalman 

filter
[7]

 and unscented Kalman filter
[8]

. 

Neural network-based sensor fusion 

algorithms have also been developed for 

robot localization
[9]

. In this paper, the 

application of a statistical filter-Savitzky-

Golay filter is proposed for filtering the 

magnetometer measure. The 

magnetometer gives the instantaneous 

values and has low signal-to-noise ratio 

(SNR). Moreover, the heading angle is 

determined from the x and y axes data of 

the magnetometer in the sensor’s reference 

frame. This technique does not assure 

uniform increment of the angle. Because 

of the unbounded growth of errors in 

MEMS systems, they are often required to 

be coupled with other sensors. These are 

done by sensor fusion algorithms. This 

paper presents Kalman filter for the 

aforementioned procedure. This paper 

presents a description of Savitzky-Golay 

filter and the Kalman filter followed by the 

implementation routine of these filters and 

the sensor fusion architecture proposed. 

The hardware structure of the system used 

for the evaluation is described later.   
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FILTER ALGORITHMS 

Savitzky-Golay Filter 

The Savitzky-Golay filter is a statistical 

digital filter which uses least squares 

method (LSM) to fit a discrete set of 

points to a polynomial curve of 

degree
[10]

. It is a finite impulse response 

(FIR) low pass filter used for smoothening 

data. The LSM is proven to be the most 

optimal method, provided the noise 

distribution in the signal is Gaussian.  

 

The Savitzky-Golay filter sets coefficients 

for the data array  of length , and fits 

to a polynomial of degree , given by the 

equation: 

          Eq. (1) 

 

The midpoint value of the convolution 

array  gives the filtered output at that 

time instant. The coefficients are chosen 

such that the mean square error (MSE) 

given by,  

                        Eq. (2) 

 

is least at the center point. Thus to 

calculate the output at any other instant of 

time, the new data is added to the array 

and is shifted so that the reconstruction is 

done at the midpoint value. This process is 

called data centering 
[11]

. One requirement 

of this filter is that the index of the filter, 

i.e., the window length of the data array 

must be an odd positive integer. The 

interval must be symmetric about the 

midpoint for linear filters. In case of 

nonlinear filters, the smoothing happens at 

the ends of the window. A generalized 

form of Savitzky-Golay filter is a moving 

average filtering with a least square fit at 

each data point. The main characteristic of 

this filter as compared to other statistical 

filters is that smoothing is achieved 

without loss of resolution. 

Kalman Filter 

The Kalman filter is a technique developed 

from estimation theory that combines the 

information of different uncertain sources 

to obtain the values of interest with a 

lower standard deviation as compared to 

the source information. Since the true state 

of the system cannot be determined, the 

Kalman filter provides a technique to 

estimate the state based on the 

combination of the system model and the 

noisy linear functions on parameters.  It is 

derived from the mean square estimator 

commonly used in linear models. It 

exploits the property of Gaussian 

distribution of noise—the convolution of 

two Gaussians is another Gaussian. 

 

The Kalman filter addresses the general 

problem of estimating a state vector at 

the instant governed by the linear 

stochastic difference equation:  

                Eq. (3) 

 

With a measurement vector  

                              Eq. (4) 

 

Where,  represents the state transition 

matrix and the control input matrix, 

respectively. is the observation matrix 

and  are process noises and the 

observation noise, respectively. The 

discrete Kalman filter estimates the state 

using a feedback control at every discrete 

time instant. The estimate of the previous 

time instant feeds back in the form of 

noisy measurement. Thus the Kalman 

filter consists of two parts—the time 

update and the measurement update.  

 

After each cycle of time and measurement 

updates, the posteriori states of the 

previous measurement is used to predict 

the priori states. The Kalman filter 

recursively conditions the current estimate 

based on its past estimates. The main 

significance of this filter as compared to 

other data fusion filters such as Weiner 
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filter is its ability to accommodate 

nonstationary data and noises. 

 

FILTER ARCHITECTURE 

Savitzky-Golay Filter 

Savitzky-Golay filter is used to increase 

the SNR of the magnetometer data. It is 

reasonable to assume the noise in the 

magnetometer data to be Gaussian. The 

incoming magnetometer data is stored in 

an array of length which represents the 

window of this filter. The coefficient array 

obtained from the polynomial of degree , 

is convolved with the magnetometer array 

to obtain the filtered heading. 

 

Selection of Optimal Filter Parameters 

The minimum index of  is required 

to fit a polynomial of degree . If the 

index is less than the degree of 

polynomial, the equations required for  

solving by least squares (LS) method 

becomes inconsistent, and if equal to the 

degree, then it replicates the input data and 

no smoothing occurs. If the degree is too 

high, then over fitting occurs which leads 

to poor estimation of data. Thus, to select 

the optimal parameters required for our 

purpose, we chose a maximum and 

minimum window length and iterated the 

process by arithmetic progression of 2 

satisfying the symmetry requirements 
[12]

. 

The MSE and the frequency response of 

the filter were taken to be the criteria for 

evaluation. Table 1 gives the filter design 

for the parameters under consideration. 

 

The optimal parameters for our filter were 

of a cubic polynomial degree and a 

window data length of 9 and their 

characteristic plots are shown in Figures 1 

and 2. 

 

Table 1: Savitzky-Golay Filter Test Parameters. 
Normalised Savitzky-Golay coefficients 

Polynomial order = 3 Polynomial order = 5 

n = 7 n = 9 n = 11 n = 7 n = 9 n = 11 

-0.0952 -0.0909 -0.0839 0.0216 0.0349 0.0419 

0.1428 0.0606 0.0209 -0.1298 -0.128 -0.1048 

0.2857 0.1688 0.1025 0.3246 0.0699 -0.0233 

0.3333 0.2337 0.1608 0.5670 0.3146 0.1398 

0.2857 0.2554 0.1958 0.3246 0.4172 0.2797 

0.1428 0.2337 0.2074 -0.1298 0.3146 0.3333 

-0.0952 0.1688 0.1958 0.02164 0.0699 0.2797 

 0.0606 0.1608  -0.128 0.1398 

 -0.0909 0.1025  0.0349 -0.0233 

  0.0209   -0.1048 

  -0.0839   0.0419 

 

 
Fig.1: Savitzky-Golay Filter Characteristics–Time Domain. 
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Fig. 2: Frequency Response of the Savitzky-Golay Filter. 

 

Kalman Filter and Sensor Fusion 

The state vector of the Kalman filter is 

defined by two arguments—the heading 

angle from the magnetometer and the z-

rate from the gyroscope. These 

measurements include a component of 

error, i.e., has some arbitrary standard 

deviation. Thus the task of Kalman filter is 

to combine the values of magnetometer 

and the gyroscope to produce a heading 

which is as close to the true value. The 

Kalman implementation can be 

summarized as follows: 

 

Obtain the priori state and the error 

covariance matrix from the previous state; 

obtain the measurement and the innovation 

matrix from the observation matrix; obtain 

the posteriori state and the error 

covariance matrix from the updated 

Kalman gains. The process control flow 

for Kalman filter is described below: 

 

Time Update 

Step 1: Estimate the current state vector 

from the previous states 

                             Eq. (5) 

Where,  is the gyroscope measurement 

 

Step 2: Update the process error 

covariance matrix from the previous state 

                       Eq. (6) 

 

Measurement Update 

Step 3: Compute the measurement residue 

                                Eq. (7) 

Where, is the measured angle from 

magnetometer 

Step 4: Compute the innovation matrix  

                               Eq. (8) 

Step 5: Update the Kalman gains 

                                   Eq. (9) 

Step 6: Update the estimate of the state 

vector from the current state 

                             Eq. (10) 

Step 7: Update the process error 

covariance matrix for the next state 

                       Eq. (11) 

Where, 

State transition matrix;  

Control input model;  

Error covariance matrix; 

Covariance matrix; 

Observation matrix; 

 Kalman gain matrix; 

Innovation matrix; 

 Measurement noise 

i. Optimal Parameters for Kalman 

Filter 

 

For the given state vector  

                                       Eq. (12) 

Where,  are the yaw rate and the 

heading angle. 
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The state transition matrix is given by, 

                                  Eq. (13) 

The control vector matrix is given by, 

                                           Eq. (14) 

 

Since the measurement is the heading from 

the magnetometer, the observation matrix 

is given by, 

                                     Eq. (15) 

 

The initial parameters were chosen based 

on iterations for optimality. The resultant 

covariance matrix and the measurement 

noise  were set as,  

             Eq. (16) 

 

Sensor Fusion 

Sensor fusion is the process of combining 

external sensor data to represent the same 

quantity with a lower error variance. The 

sensors are viewed as different members 

of a class whose output is a function of the 

congruent data. Kalman filter is the most 

widely used data fusion algorithms 

currently and has better performance for 

linear data as compared to the standard 

Bayesian filter. Due to the stochastic 

nature of noise, Kalman filter is almost the 

predominant technique used for sensor 

fusion 
[13]

.  

 

There are two broad types of sensor 

integration—tightly coupled and loosely 

coupled. In loosely coupled sensor 

integration, the yaw angle from the gyro is 

preprocessed by an internal Kalman filter 

using the magnetometer heading prior to 

error correction.  

 

In tightly coupled, the filtered data of the 

magnetometer from the Savitzky-Golay 

filter is used in the correction of the gyro 

yaw angle. For our evaluation, a tightly 

coupled integration was used. Figure 3 

describes the control flow of the data for 

the filter architecture. 

 
Fig. 3: Flowchart of the Filter 

Architecture. 

 

HARDWARE DESCRIPTION 

The hardware used for the evaluation of 

the proposed filter architecture was 

MPU9150 MEMS IMU. Its magnetometer 

is a three-axis silicon monolithic Hall-

effect magnetic sensor with magnetic 

concentrator and has a resolution of 13 bits 

(Figure 4) 
[14]

.  

 

 
Fig. 4: MPU 9150 Magnetometer Axes 

Configuration. 

 

The heading angle from the 

magnetometer is calculated by the 

following equation:  

               Eq. (17) 

 

Where, are the x and y axis 

values of the magnetometer, respectively; 

and is defined as, 
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Fig. 5: Evaluation Board with MPU 9150 

Interfaced Arduino Nano. 

 

The Arduino Nano board was used as 

the controller and the MPU 9150 was 

interfaced to it (Figure 5). The data from 

the IMU were serially transmitted though 

serial protocol interface (SPI) at 100 Hz. 

The filter architecture was coded into the 

Atmega 328 microcontroller and was also 

processed at 100 Hz. The mobile robot 

was set to wander about the setup arena 

and the raw and filtered values were 

recorded. 

 

RESULTS 

In our experimental implementation, the 

output heading value from the filter 

architecture was greatly dependent on the 

initial calibration of the magnetometer and 

the gyroscope. The SNR of the input data 

from the magnetometer was calculated to 

be 1.435. Table 2 presents the evaluation 

results from the test parameters of the 

Savitzky-Golay filter. 

 

The optimal Savitzky-Golay parameters 

were chosen not only based on the filter 

characteristics but also on the execution 

time as well as the program memory 

required. The chosen stated cubic 

polynomial fit with an index of 9 was 

tested to be efficient for out particular 

application and requirements (Figure 6). 

 

Table 2: Evaluation Results. 
Savitzky-Golay parameters Execution time (ms) Memory required(Bytes) SNR 

 20.41 80 1.7502 

 20.48 96 1.7675 

 20.51 112 1.7701 

 20.72 96 1.7616 

 20.77 112 1.7638 

 20.80 128 1.7656 

 

 
Fig. 6: Savitzky-Golay Filtering Results. 
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It can be observed that the filtered value 

almost follows the true posture. The 

performance of the Kalman filter for 

fusing the filtered magnetometer data and 

the yaw angle from gyroscope is depicted 

in Figure 7. The bias and the measurement 

error was set such that accurate heading 

angle was obtained. The total execution 

time was 42.94 msec and the resultant 

heading had a SNR of 2.1229. The filter 

architecture yielded smooth and optimum 

heading data from the noisy magnetometer 

and drifting gyrosensor measures. 

Compared to the current gyroscope–

odometer data fusion implementations
 [15–

21]
, the proposed filter architecture 

produces superior results and is consistent.  

 

 
Fig. 7: Performance of the Savitzky-

Golay–Kalman Filter Architecture. 

 

CONCLUSION 

In this paper, the Savitzky-Golay filter and 

the standard Kalman filter are used for the 

robot heading estimation. From the plots 

obtained from the data of the evaluation 

hardware, the proposed filter architecture 

is consistently better at producing the 

optimum heading as compared to the other 

filtering techniques. The Savitzky-Golay 

filter was found to be optimum for filtering 

linear data without loss of resolution and 

with lesser program memory required for 

its software implementation. The standard 

Kalman filter with its optimized 

parameters produced the robot heading 

with minimum variance. This filter 

architecture can also be applied for 

distance estimation combining the data 

from accelerometer and GPS; thus in 

general for a generic robot localization and 

navigation applications.  
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