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Abstract 
This paper investigates the problem of robust passivity of uncertain stochastic neural 

networks with discrete and distributed time-varying delays. To reflect the most dynamical 

behaviors of the system, both parameter uncertainties and stochastic disturbance are 

considered, where parameter uncertainties enter into all the system matrices, stochastic 

disturbances are given in the form of a Brownian motion. By utilizing the Lyapunov 

functional method, the Itô differential rule and matrix analysis techniques, we establish 

sufficient criterion such that, for all admissible parameter uncertainties and stochastic 

disturbances, the stochastic neural networks is robustly passive in the sense of expectation. 

The delay - dependent stability condition is formulated, in which the restriction of the 

derivative of the time-varying delay should be less than 1 is removed. The derived criteria are 

expressed in terms of linear matrix inequalities (LMIs) that can be easily checked by using 

the standard numerical software. Illustrative examples are presented to demonstrate the 

effectiveness and usefulness of the proposed results. 
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INTRODUCTION 

In recent years, neural networks have 

received considerable attention due to their 

extensive applications in solving some 

optimization problem, associative 

memory, classification of patterns, and 

other areas. Time delays are unavoidably 

present due to the finite switching speeds 

of the amplifiers and the inherent 

communication time of neurons, and its 

existence will affect the stability of a 

network by creating oscillatory and 

instability characteristics. 
[13, 14] 

Therefore, 

the stability analysis of neural networks 

with delays has recently received much 

attention. 
[1, 10, 19, 27, 20, 23, 25, 26, 28, 32, 40] 

When one models real nervous systems, 

stochastic disturbance and parameter 

uncertainties are unavoidable to be 

considered. Because in real nervous 

system, synaptic transmission is a noisy 

process brought on by random fluctuation 

from the release of neurotransmitters, 
[17] 

and the connection weights of the neuron 

depend on certain resistance and 

capacitance values that include 

uncertainties. Therefore, it is of practical 

importance to study the stochastic effects 

on the stability of neural networks with 

parameter uncertainties, some results 

related to this problem have been 

published in the papers mentioned in the 

references. 
[2, 7, 16, 18, 36–39]

 

 

In addition, parameter uncertainties can be 

often encountered in real systems as well 

as neural networks, due to the modelling 

inaccuracies and/or changes in the 
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environment of the model. In the past few 

years, to solve the problem brought by 

parameter uncertainty, robustness analysis 

for different uncertain systems has 

received considerable attention. 
[22, 30, 31, 35]

 

 

On another research front, the passivity 

problem for a variety of practical systems 

has been attracting renewing attention for 

many years. The passivity theory was 

firstly proposed in the circuit analysis 
[3]

 

and since then has found successful 

applications in diverse areas such as 

stability, signal processing, complexity, 

fuzzy control, chaos control, and 

synchronization. 
[8, 11, 24, 33, 41] 

For instance, 

the passivity problem of the uncertain 

neural networks with time varying delays. 

Very recently, the passivity problems were 

dealt with stochastic neural networks with 

time varying delays. 
[11] 

To the best of 

author’s knowledge, there are no results on 

the passivity of stochastic delayed neural 

networks with discrete and distributed time 

varying delays and parameter 

uncertainties. 

 

Motivated by the above discussions, in this 

paper we aim to investigate the passivity 

of stochastic delayed neural networks with 

discrete and distributed time varying 

delays and parameter uncertainties. A 

novel Lyapunov functional method 

combined with the matrix analysis 

techniques is developed to obtain 

sufficient conditions under which the 

system is globally robustly passive in the 

sense of expectation. These sufficient 

conditions are expressed in terms of LMIs 

that can be solving numerically. These 

conditions are delay-dependent, that is, the 

conditions depend on the size of time-

varying delays. It is usually less 

conservative than those delay-independent 

ones. Finally, numerical examples are 

given to show the effectiveness of the 

obtained results. 

 

Notations 

Throughout the manuscript we will use the 

notation A > 0 to denote that the matrix A 

is a symmetric and positive definite 

matrix. Let (Ω, F, {Ft}t≥0,P) be a complete 

probability space with a filtration {Ft}t≥0 

satisfying the usual conditions (it is right 

continuous and F0 contains all P-null sets); 

 ℒF0

𝑝
([−τ, 0]; Rn ) be the family of all 

bounded, F0- measurable, C([−τ, 0]; Rn )-

valued random variables ξ = {ξ(θ) : −τ ≤ 
θ ≤ 0} such that sup−τ≤θ≤0 E|ξ(θ)|p < ∞.  
 

The mathematical expectation operator 

with respect to the given probability 

measure P is denoted by E{·}. The 

shorthand diag {· · · } denotes the block 

diagonal matrix. k · k stands for the 

Euclidean norm. Moreover, the notation * 

always denotes the symmetric block in one 

symmetric matrix. 

 

SYSTEM DESCRIPTION AND PRELIMINARIES 

Consider the following uncertain stochastic recurrent neural networks with time-varying 

delays described by, 
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where x(t) = [x1(t), x2(t), . . . , xn(t)]T ∈ Rn is the neural state vector, J(t) is the input, y(t) is 

the output, τ (t) is the unknown time-varying delay which satisfies 0 ≤ τ (t) ≤ τ ̅ < ∞, where 

τ ̅and d are known constants.  

 

The matrix A(t) is a diagonal matrix and B(t) ∈ R 
n×n

 , W(t), D(t) ∈ R n×n are the connection 

weight matrices, C(t) ∈ R 
n×n

 and H(t) ∈ R 
n×n

 are known real constant matrices, ∆A(t), ∆B(t), 

∆W(t), ∆C(t), ∆D(t) and ∆H(t) represents the time-varying parameter uncertainties and are 

assumed to be of the form:  

 

[∆A ∆B ∆W ∆C ∆H ∆D(t)] = MF(t)[N1 N2 N3 N4 N5 N6],                                                (2)  

 

where M, N1 N2 N3 N4 N5 and N6 are known real constant matrices and F(t), are known time-

varying matrix functions satisfying  

 

F
T
(t)F(t) ≤ I.           (3) 

 It is assumed that all elements F(t) are Lebesque measurable, ∆A, ∆W ∆B, ∆C, ∆D(t) and 

∆H are said to be admissible if both (2) and (3) hold.  

 

Further, ω(t) = [ω1(t), ω2(t), . . . , ωm(t)]T ∈ R m is a m− dimensional Brownian motion 

defined on a complete probability space (Ω, F,P) and f(x(t)) = [f1(x1(t)), f2(x2(t)), . . . , 

fn(xn(t))]T ∈ R n is the neuron activation function with f(0) = 0. 3 The following assumption 

is made on the neuron activation function. (A) Each neuron activation functions f(·) in system 

(1) are bounded and satisfy the following condition 0 ≤ fi(x) − fi(y) x − y ≤ Li , (4) where Li 

(i = 1, 2 . . . , n) are some constants and they can be positive. So it is less restrictive than the 

descriptions on both the sigmoid activations and the Lipschitz type activation functions.  

 

Denote L = diag{L1, . . . , Ln}. Defining the following variables for the stochastic neural 

networks (1) with time varying delays, g1(t) = −(A(t) + ∆A(t))x(t) + (B(t) + ∆B(t)))f(x(t)) + 

(W(t) + ∆W(t))f(x(t − τ (t))) + (D(t) + ∆D(t)) Z t t−τ(t) f(x(s))ds + J(t), g2(t) = (C(t) + 

∆C(t))x(t) + (H(t) + ∆H(t))x(t − τ (t)) Then stochastic neural networks (1) with time varying 

delays is described as dx(t) = g1(t)dt + g2(t)dω(t), (5) Integrating both sides of (5) from t − τ 

(t) to t yields x(t) − x(t − τ (t)) = Z t t−τ(t) g1(s)ds + Z t t−τ(t) g2(s)dw(s). 

 

Remark 2.1-The parameter uncertainty structure as in (2) − (3) has been widely exploited in 

the problems of robust control and robust filtering of uncertain systems (see [30] and the 

references there in). The stochastic disturbance term, [(C(t) + ∆C(t))x(t) + (H(t) + ∆H(t))x(t − 

τ (t))]dω(t), can be viewed as stochastic perturbation on the neuron states and delayed neuron 

states. 

 

Definition 2.2.- The system (1) is said to be globally robustly passive in the sense of 

expectation if there exists a scalar β ≥ 0 such that E n Z t 0 J T (s)y(s)dso ≥ −βEn Z t 0 J T 

(s)J(s)dso , for allt ≥ 0 for all admissible uncertainties (3) and (4) and solution x(t, 0) of 1. 

Before stating the main results, we need to introduce the following notations and lemmas 

which will be essential for the proof of few results in the next section.  

 

Let C 1,2 (R × Rn, R+) denote the family of all nonnegative function V (t, x) on R × Rn 

which are continuously twice differentiable in x and once differentiable in t. For each V ∈ C 
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1,2 (R × Rn, R+), by Itˆo’s differential formula, the stochastic derivative of V (t, x(t)) along 

(1) can be obtained as:  

dV (t, x(t)) = LV (t, x(t))dt + Vx(t, x(t))[(C + ∆C(t))x(t) + (H + ∆H(t))x(t − τ (t))]dω(t) where 

L is the weak infinitesimal operator of the stochastic process {xt = x(t+s)|t ≥ 0, −τM ≤ s ≤ 0}, 

given by  

LV (t, x(t)) = Vt(t, x(t)) + Vx(t, x(t))h − (A + ∆A(t))x(t) + (B + ∆B(t))f(x(t))+ (W + 

∆W(t))f(x(t − τ (t))) + (D + ∆D(t)) Z t t−τ(t) f(x(s))ds + J(t) i + 1 2 trace[(C + ∆C(t))x(t) + (H 

+ ∆H(t))x(t − τ (t))]T 4 × Vxx[(C + ∆C(t))x(t) + (H + ∆H(t))x(t − τ (t))] with Vt(t, x(t)) = ∂V 

(t, x(t)) ∂t , Vx(t, x(t)) = ∂V (t, x(t)) ∂x1 , . . . , ∂V (t, x(t)) ∂xn  , Vxx(t, x(t)) = ∂ 2V (t, x(t)) 

∂xi∂xj  n×n.  

 

Lemma 2.3. (Schur complement [4]). The LMI " Q(y) S(y) S(y) T R(y) # < 0 is equivalent to 

R(y) < 0, Q(y) − S(y)R(y) −1S(y) T < 0 where Q(y) = Q(y) T , R(y) = R(y) T , and S(y) 

depend affinely on y. 

 

Lemma 2.4. [15] For any constant matrix P ∈ Rn×n, P = P T > 0, scalar r > 0, and vector 

function ϕ : [0, r] → Rn, one has r Z r 0 ϕ T (s)P ϕ(s)ds ≥ Z r 0 ϕ T (s)dsT P Z r 0 ϕ T (s)ds , 

provided that the integrals are well defined.  

 

Lemma 2.5. [15] For given matrices D, E and F with F T F ≤ I and scalar  > 0, the following 

inequality holds, DF E + E T F T DT ≤ DDT + −1EET . Lemma 2.6. [6] Given any real 

matrices K1, K2, Q of appropriate dimensions and a number ν > 0 such that 0 < Q = QT , 

then the following inequality holds:  

KT 1 K2 + KT 2 K1 ≤ νKT 1 QK1 + ν −1KT 2 Q −1K2. 3.  

 

Global passivity results In this section, some sufficient conditions for passivity of the system 

(1) without uncertainties are obtained. 

 

Theorem 3.1. The delayed neural networks (1) with ∆A = ∆B = ∆W = ∆C = ∆D(t) = ∆H = 0 

is said to be globally passive in the sense of expectation, if there exist symmetric positive 

definite matrices P > 0, Q > 0, R > 0, S > 0, V > 0, positive diagonal matrices T1 > 0, T2 > 0 

and any matrices O1, O2, O3, U, U¯ such that feasible solution exist for the following LMI, 
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Proof: We use the following Lyapunov functional to derive the stability result  

V (t, x(t)) = V1(t, x(t)) + V2(t, x(t)) + V3(t, x(t)) + V4(t, x(t)), (7)  

 

Where, 

V1(t, x(t)) = x T (t) P x(t),  

V2(t, x(t)) = Z t t−τ(t) f T (x(s)) Q f(x(s)) ds,  

V3(t, x(t)) = Z t t−τ(t) x T (s) R x(s) ds,  

V4(t, x(t)) = ¯τ Z 0 −τ¯ Z t t+θ f T (x(s)) S f(x(s)) dsdθ,  

V5(t, x(t)) = ¯τ Z 0 −τ¯ Z t t+θ g T 1 (s) V g1(s)) dsdθ.  

 

By Itˆo’s formula, the stochastic derivative of V (t, x(t)) along the trajectories of the system 

(1) with ∆A = ∆B = ∆W = ∆C = ∆D = ∆H = 0 can be obtained as, LV (t, x(t)) = LV1(t, x(t)) + 

LV2(t, x(t)) + LV3(t, x(t)) + LV4(t, x(t)) + LV5(t, x(t)), (8) where LV1(t, x(t)) ≤ 2x T (t)P h 

− Ax(t) + Bf(x(t)) + W f(x(t − τ (t)) + D Z t t−τ(t) f(x(s))ds + J(t) i + [Cx(t) + Hx(t − τ (t))]T 

P[Cx(t) + Hx(t − τ (t))] LV2(t, x(t)) ≤ f T (x(t)) Q f(x(t)) − (1 − d)f T (x(t − τ (t))) Q f(x(t − τ 

(t))) LV3(t, x(t)) ≤ x T (t) R x(t) − (1 − d) x T (t − τ (t))Rx(t − τ (t)) LV4(t, x(t)) ≤ τ¯ 2 f T 

(x(t))Sf(x(t)) − τ¯ Z t t−τ(t) f T (x(s))Sf(x(s))ds, LV5(t, x(t)) ≤ τ¯ 2 g T 1 (t)V g1(t) − τ¯ Z t 

t−τ(t) g T 1 (s)V g1(s)ds. 6 By Jensen’s Inequality [15] −τ¯ Z t t−τ(t) f T (x(s))Sf(x(s))ds ≤ 

−Z t t−τ(t) f(x(s))dsT S Z t t−τ(t) f(x(s))ds, (9) −τ¯ Z t t−τ(t) g T 1 (s)V g1(s)ds ≤ −Z t t−τ(t) 

g1(s)dsT V Z t t−τ(t) g1(s)ds. (10) For any matrices U, U¯ of appropriate dimensions, it can 

be shown that 2[x T (t − τ (t))U¯ + g T 1 (t)U] h − g1(t) − Ax(t) + Bf(x(t)) + W f(x(t − τ (t))) 

+ D Z t t−τ(t) f(x(s))ds +J(t) i = 0. (11) 2[x T (t)O1 + x T (t − τ (t))O2 + g T 1 (t)O3][x(t) − 

x(t − τ (t)) − Z t t−τ(t) g1(s)ds − Z t t−τ(t) g2(s)dw(s)] = 0. (12) By using Lemma 2.6 −2ξ T 1 

(t)O Z t t−τ(t) g1(s)ds ≤ ξ T 1 (t)OV −1O T ξ1(t) + Z t t−τ(t) g1(s)dsT V Z t t−τ(t) g1(s)ds 

(13) where ξ T 1 (t) = [x T (t) x T (t − τ (t)) g T 1 (t)], OT = [OT 1 OT 2 OT 3 ]. Therefore we 

have dV (t, x(t)) ≤ 2x T (t)P h − Ax(t) + Bf(x(t)) + W f(x(t − τ (t))) + D Z t t−τ(t) f(x(s))ds + 

J(t) i + f T (x(t)) Q f(x(t)) + x T (t) R x(t) − (1 − d) x T (t − τ (t))Rx(t − τ (t)) + (1 − d)f T (x(t 

− τ (t))) Q f(x(t − τ (t))) + ¯τ 2 f T (x(t))Sf(x(t)) − τ¯ Z t t−τ(t) f T (x(s))Sf(x(s))ds − τ¯ Z t 

t−τ(t) g T 1 (s)V g1(s)ds + ¯τ 2 g T 1 (t)V g1(t) + 2[x T (t − τ (t))U¯ + g T 1 (t)U][−g1(t) − 

Ax(t) + Bf(x(t)) + W f(x(t − τ (t))) + J(t) i + 2[x T (t)O1 + x T (t − τ (t))O2 + g T 1 (t)O3][x(t) 

− x(t − τ (t)) − Z t t−τ(t) g1(s)ds − Z t t−τ(t) g2(s)dw(s) + [Cx(t) + Hx(t − τ (t))]T P[Cx(t) + 

Hx(t − τ (t))] × +2x T (t)P[Cx(t) + Hx(t − τ (t))]dw(t) o . (14) From assumption (A) we know 

that f T (x(t))[f(x(t)) − Lx(t)] ≤ 0, f T (x(t − τ (t)))[f(x(t − τ (t))) − Lx(t − τ (t))] ≤ 0. Then, for 

T1 = diag{t11, . . . , t1n} ≥ 0, T2 = diag{t21, . . . , t2n} ≥ 0 we have dV (t) ≤ dV (t) − 2T1f T 

(x(t))[f(x(t)) − Lx(t)] 7 − 2T2f T (x(t − τ (t)))[f(x(t − τ (t))) − Lx(t − τ (t))]. (15) Finally, from 

(8)-(15), we have dV (t, x(t)) − γJT (t)J(t) − J T (t)y(t) ≤ ξ T (t) Ξ ξ(t) + ξ T 1 (t)OV −1O T 

ξ1(t) − 2ξ T 1 (t)O Z t t−τ(t) g2(s)dw(s) + 2x T (t)P h Cx(t) + Hx(t − τ (t))i dw(t) o , (16) 
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where ξ(t) = [x T (t) x T (t − τ (t)) f T (x(t)) f T (x(t − τ (t))) Z t t−τ(t) f(x(s))dsT J T (t) g T 1 

(t)]
T
 

 
 

By using Schur complement lemma we have dV (t, x(t)) − γJT (t)J(t) − J T (t)y(t) ≤ ξ T (t) Ω 

ξ(t) − 2ξ T 1 (t)O Z t t−τ(t) g2(s)dw(s) + 2x T (t)P h Cx(t) + Hx(t − τ (t))i dw(t) o , (17) 

Taking the mathematical expectation on the both sides of (17), one can deduce that E{dV (t, 

x(t)) − γJT (t)J(t) − J T (t)u(t)} ≤ E(ξ T (t)Ωξ(t)) ≤ 0, which means E{ Z t 0 J T (s)y(s)ds} ≥ E  

V1(t, x(t)) − V1(t, 0) − γ Z t 0 J T (s)J(s)ds = E  V1(t, x(t)) − γ Z t 0 J T (s)J(s)ds ≥ −γE Z t 0 

J T (s)J(s)ds .  

 

From Definition 2.2, we know that the stochastic neural network (1) with ∆A = ∆B = ∆W = 

∆C = ∆D = ∆H = 0 is globally passive in the sense of expectation, and the proof of Theorem 

3.1 is completed.  

 

8 4. Robust passivity results In this section, some sufficient conditions for passivity of the 

system (1) are obtained.  

 

 

Theorem 4.1. The delayed neural networks (1) is said to be globally passive in the sense of 

expectation, if there exist symmetric positive definite matrices P > 0, Q > 0, R > 0, S > 0, V > 

0, positive diagonal matrices T1 > 0, T2 > 0 any matrices O1, O2, O3, U, U¯ and positive 

scalars 1, 2 such that feasible solution exist for the following LMI,  
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Proof: Consider the Lyapunov functional as described in Theorem 3.1. For any matrices O1, 

O2, O3, U, U¯ of appropriate dimensions, it can be shown that 2[x T (t − τ (t))U¯ + g T 1 

(t)U][−g1(t) − (A + ∆A)x(t) + (B + ∆B)f(x(t)) + (W + ∆W)f(x(t − τ (t))) + (D + ∆D) Z t t−τ(t) 

f(x(s))ds + J(t) i = 0, (19) 9 By Itˆo’s formula, using (12) and (19) the stochastic derivative of 

V (t, x(t)) along the trajectories of the system (1) can be obtained as, 

 

dV (t, x(t)) ≤ 2x T (t)P h − (A + ∆A)x(t) + (B + ∆B)f(x(t))d + (W + ∆W)f(x(t − τ (t))) + (D + 

∆D) Z t t−τ(t) f(x(s))ds + J(t) i + f T (x(t)) Q f(x(t)) + x T (t) R x(t) − (1 − d) x T (t − τ 

(t))Rx(t − τ (t)) + f T (x(t − τ (t))) Q f(x(t − τ (t))) + ¯τ 2 f T (x(t))Sf(x(t)) − τ¯ Z t t−τ(t) f T 

(x(s))Sf(x(s))ds − τ¯ Z t t−τ(t) g T 1 (s)V g1(s)ds + 2[x T (t − τ (t))U¯ + g T 1 (t)U][−g1(t) − 

(A + ∆A)x(t) + (B + ∆B)f(x(t)) + (W + ∆W)f(x(t − τ (t))) + (D(t) + ∆D(t)) Z t t−τ(t) f(x(s))ds 

+ J(t) i + 2[x T (t)O1 + x T (t − τ (t))O2 + g T 1 (t)O3][x(t) − x(t − τ (t)) − Z t t−τ(t) g1(s)ds − 

Z t t−τ(t) g2(s)dw(s) + ¯τ 2 g T 1 (t)V g1(t) + [(C + ∆C)x(t) + (H + ∆H)x(t − τ (t))]T P[(C + 

∆C)x(t) + (H + ∆H)x(t − τ (t))] + 2x T (t)P[(C + ∆C)x(t) + (H + ∆H)x(t − τ (t))]dw(t). (20) 

 

From (15) we have,  
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dV (t) ≤ dV (t) − 2T1f T (x(t))[f(x(t)) − Lx(t)] − 2T2f T (x(t − τ (t)))[f(x(t − τ (t))) − Lx(t − τ 

(t))]. (21) 

 

Finally, from (19)-(21), we have 

 

dV (t, x(t)) − γJT (t)J(t) − J T (t)y(t) ≤ ξ T (t) Ξ¯ ξ(t) + ξ T 1 (t)O V −1O T ξ1(t) − 2ξ T 1 (t)O 

Z t t−τ(t) g2(s)dw(s) + 2x T (t)P h (C + ∆C)x(t) + (H + ∆H)x(t − τ (t))i dw(t) o , (22) 

 

where 

 

ξ(t) = [x T (t) x T (t − τ (t)) f T (x(t)) f T (x(t − τ (t))) Z t t−τ(t) f(x(s))dsT J T (t) g T 1 (t)]T 

 

 
 

By using Schur complement Lemma 2.4, we have 
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Again by using Schur complement lemma 2.4 Ξ can be written as Π. Taking the 

mathematical ¯ expectation on the both sides of (22), one can deduce that E{dV (t, x(t)) − γJT 

(t)J(t) − J T (t)u(t)} ≤ E(ξ T (t)Πξ(t)) ≤ 0, which means E{ Z t 0 J T (s)y(s)ds} ≥ E  V (t, x(t)) 

− V (t, 0) − γ Z t 0 J T (s)J(s)ds 12 = E  V (t, x(t)) − γ Z t 0 J T (s)J(s)ds ≥ −γE Z t 0 J T 

(s)J(s)ds . From Definition 2.2, this indicates that the stochastic neural network (4) is globally 

robustly passive in the sense of expectation, and the proof of Theorem 4.1 is completed.  

 

If there are no distributed delays then the system (1) is simplified to dx(t) = [−(A + ∆A)x(t) + 

(B + ∆B)f(x(t) + (W + ∆W)f(x(t − τ (t))) + J(t)]dt + [(C + ∆C)x(t) + (H + ∆H)x(t − τ 

(t))]dw(t), (23) Corollary 4.2. The delayed neural networks (23) is said to be globally passive 
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in the sense of expectation, if there exist symmetric positive definite matrices P > 0, Q > 0, R 

> 0, S > 0, V > 0, positive diagonal matrices T1 > 0, T2 > 0 any matrices O1, O2, O3, U, U¯ 

and positive scalars 1, 2 such that feasible solution exist for the following LMI,  

 

 
O˜T and S˜T are as def ined in Theorem 3.1.  

 

Proof: The proof is similar to that in the proof of Theorem 4.1 by choosing D=0. Hence it is 

omitted. If there are no stochastic disturbance then the system (23) is simplified to dx(t) = 

−(A + ∆A)x(t) + (B + ∆B)f(x(t)) + (W + ∆W)f(x(t − τ (t))) + J(t), (25) y(t) = f(x(t)), x(t) = 

φ(t), −τ¯ ≤ t ≤ 0. Corollary 4.3. The delayed neural networks (25) is said to be globally 

passive, if there exist symmetric positive definite matrices P > 0, Q > 0, R > 0, S > 0, V > 0, 

positive diagonal matrices T1 > 0, T2 > 0 any matrices O1, O2, O3, U, U¯ and positive scalar 

1 such that feasible solution exist for the following LMI,  
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Remark 4.4. Theorem 3.1, Theorem 4.1 and corollary 4.2 are depends on the size of time 

delay element, which means that it is less conservative than those delay-independent ones, 

especially when the delay value is very small, and this may create a gap of LMI-based delay-

dependent results for stochastic delayed neural networks. It is realized that, the problems 

studied in many other papers are also a special class of this paper, such as [5], [29], [31], and 

[34]. 

 

5. Numerical Examples Example 1. Consider the stochastic recurrent neural network (1) with 

uncertainties is of the following form : dx(t) = [−(A + ∆A)x(t) + (B + ∆B)f(x(t)) + (W + 

∆W)f(x(t − τ (t))) + (D + ∆D) Z t t−τ(t) f(x(s))ds + J(t)]dt + [(C + ∆C)x(t) + (H + ∆H)x(t − τ 

(t))]dw(t), with the parameters A = " 3 0 0 4 # , B = " 0.1 0.9 0.8 1.2 # , W = " 0.2 0.4 0.3 0.5 

# , D = " 0.1 0.1 0.3 0.3 # , C = " 0.3 0 0 0.5 # , H = " 0.1 0 0 0.2 # , L = 0.5I, N1 = N2 = N3 

= 0.2I, N4 = N5 = N6 = 0.1I, M = 0.2I. By using the Matlab LMI toolbox [12], we solve the 

LMI (18) for i > 0 (i = 1, 2), τ = 0.9 and d = 1.5 the feasible solutions are P = " 35.9002 

9.6420 9.6420 35.3566 # , Q = " 0.0399 −0.0263 −0.0263 0.0179 # , R = " 0.0025 −0.0015 

−0.0015 0.0011 # , S = " 31.3169 29.4440 29.4440 30.7951 # , V = " 8.7753 0.5379 0.5379 

7.0063 # , T1 = " 339.8946 0 0 383.0669 # , T2 = " 11.9886 0 0 13.5799 # , γ = 9.7467.  

 

Therefore, the concerned neural networks with time-varying delays is passive.  

 

Example 2. Consider the recurrent neural network [11] is of the following form:  
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x˙(t) = −(A + ∆A(t))x(t) + (B + ∆B)f(x(t)) + (W + ∆W(t))f(x(t − τ (t))) + J(t)  

 

with the parameters A = " 2 0 0 3.5 # , B = " −0.34 −0.44 0.38 −0.03 # , W = " 0.22 1.35 1.51 

−0.41 # , L = " 0.3 0 0 0.4 # , M = " 0.1 −0.2 0.2 0.3 # , N1 = [0.02 0.02], N2 = [−0.03 0.01], 

N3 = [0.01 − 0.01]  

 

By using the Matlab LMI toolbox [12], we solve the LMI (26) for 1 > 0, τ¯ = 0.8629 and d = 

0.9 the feasible solutions are 15 P = " 47.1846 −157.1489 −157.1489 850.9588 # , Q = " 

0.0007 −0.0012 −0.0012 0.0276 # , R = " 0.0014 −0.0068 −0.0068 0.0559 # , S = " 0.0095 

−0.0284 −0.0284 0.2352 # , V = " 47.9259 −159.5879 −159.5879 907.6666 # , T1 = " 

44.4165 0 0 147.2487 # , T2 = " 20.3622 0 0 95.9050 # , γ = 1.7782 × 108. 

 

Therefore, the concerned neural networks with time-varying delays is passive. Some 

comparisons on upper bounds of time delay are listed in Table 1. From Table 1, it can be 

concluded that the obtained results in this paper are less conservative than those in [9, 11, 

24]. 6. Conclusion In this paper, we have considered the problem of passivity and robust 

passivity analysis for a class of uncertain stochastic recurrent neural networks with time-

varying delays. By choosing a new Lyapunov-Krasovskii functional, the improved delay-

dependent criteria have been proposed. Finally, numerical examples have been provided to 

illustrate the effectiveness of the obtained results. Our results can be specialized to several 

cases including those studied extensively in the literature. Table 1. Comparision of the 

maximal allowable delays ¯τ for Example 2 Method d=0.3 d=0.5 d=0.7 d=0.9 [24] 0.1178 

0.1145 0.1123 0.1105 [9] 0.4197 0.4145 0.4117 0.4082 [11] 0.5763 0.5679 0.5566 0.5273 

Corollary 4.2 9.2211 1.4397 0.9149 0.8629  

 

This work was supported by Department of Science and Technology (DST),under research 

project No. SR/FTP/MS-039/2011. 
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