Open Access Open Access  Restricted Access Subscription or Fee Access

Design of Clean Processing Production Line for Automobile Wheels

Changhe Li, Bo Liu, Hongjun Liu, Naiqing Zhang, Hongjun Liu, Minkai Chen

Abstract


Aiming at the present situation of low automation degree, poor working environment and high processing precision of automobile wheel hub production line, a clean processing line of automobile wheel hub was designed. The production line for the hub machining process planning, the material rack which is easy to split is designed by the way of clearance fit, and through the split device and transport device to transport the hub; the fixture uses the principle of spindle positioning, by connecting rod mechanism to drive positioning
parts to achieve self-positioning, the use of crank slider mechanism to achieve clamping, enhance the positioning accuracy and clamping reliability of hub processing on the machine tool; using minimum quantity lubrication way to achieve environmental protection and energy saving in machining process; can improve the loading and unloading rate effectively by designing the dual position grab of the manipulator and realizing the trajectory optimization of the manipulator by simulation software. The hub production line is rationally planned
by means of modeling and simulation, which provides basis and reference for actual production.


Keywords


automobile wheel hub; production line; automation; design

Full Text:

PDF

References


Dai X Z, Wang Y, Peng Z P, et al. Prediction Method of Car Ownership Based on Double Logistic Curve

Model[J]. Journal of Chongqing Jiaotong University(Natural Science), 2019, 38(11): 21-26.doi:10.3969

/j.issn.1674-0696.2019.11.04.

Baheti U, Guo C, Malkin S. Environmentally conscious cooling and lubrication for grinding[J]. Proceedings of

the International Seminar on Improving Machine Tool Performance, 1998, 2: 643-654.

Klocke F, Eisenblätter G. Dry Cutting. CIRP Ann-Manuf Technol 1997; 46: 519-526.

Jia D Z, Li C H, Zhang Y B, et al. Experimental research on the influence of the jet parameters of minimum

quantity lubrication on the lubricating property of Ni-based alloy grinding[J]. International Journal of

Advanced Manufacturing Technology, 2016, 82(1-4): 617-630. doi.org/10.1007/s00170-015-7381-y.

Wang C, Xie Y, Qin Z, et al. Wear and breakage of TiAlN- and TiSiN-coated carbide tools during high-speed

milling of hardened steel[J]. Wear, 2015, 336-337: 29-42. doi.org/10.1016/j.wear.2015.04.018.

Jia D Z, Li C H, Zhang Y B, et al. Experimental verification of nanoparticle jet minimum quantity lubrication

effectiveness in grinding[J]. Journal of Nanoparticle Research, 2014, 16(12): 1-15. doi.org/10.1007/s11051-

-2758-7.

Li B K, Li C H, Zhang Y B, et al. Effect of the physical properties of different vegetable oil-based nanofluids

on MQLC grinding temperature of Ni-based alloy[J]. Intrenational Journal of Advanced Manufacturing

Technology, 2017, 89: 3459-3474. doi.org/10.1007/s00170-016-9324-7.

Yokokawa, kazuhiko, yokokawa, munehiko. Meet ISO14000 environmental protection - do not use cutting oil

cold air grinding (4) the first cold air the grinding process [J]. Machinery and tools, 1999, 43:121-125.

Liu J, Han R, Zhang L, et al. Study on lubricating characteristic and tool wear with water vapor as coolant and

lubricant in green cutting[J]. Wear, 2007, 262(3): 442-452. doi.org/10.1016/j.wear.2006.06.014.

Kaynak Y, Karaca H E, Noebe R D, et al. Tool-wear analysis in cryogenic machining of NiTi, shape memory

alloys: A comparison of tool-wear performance with dry and MQL machining[J]. Wear, 2013, 306(1-2):51-

doi.org/10.1016/j.wear.2013.05.011.

Debnath S, Reddy M M, Yi Q S. Environmental friendly cutting fluids and cooling techniques in machining: a

review[J]. Journal of Cleaner Production, 2014, 83(83):33-47. doi.org/10.1016/j.jclepro.2014.07.071.

Hong S Y, Zhao Z. Thermal aspects, material considerations and cooling strategies in cryogenic machining[J].

Clean Products & Processes, 1999, 1(2): 107-116. doi.org/10.1007/s100980050016.

WAGN X M, ZHANG J C, WANG X P, et al. Effect of nanoparticale volume on grinding peformance of

titanium alloy in cryogenic air minimum quantity lubrication[J]. Diamond & Abrasives Engineering,

,40(05):23-29.DOI:10.13394/j.cnki.jgszz.2020.05.0004.

HUANG B T, ZHANG Y B, WANG X M, ed, al. Experimental evaluation of wear mechanism and grinding

performance of SG wheel in machining nickel-based alloy GH4169[J]. Surface technology, 2021, 50(12): 62-

Sadeghi M H, Haddad M J, Tawakoli T, et al. Minimal quantity lubrication-MQL in grinding of Ti–6Al–4V

titanium alloy[J]. International Journal of Advanced Manufacturing Technology, 2009, 44(5-6): 487-500.

doi.org/10.1007/s00170-008-1857-y.

Yin Q A, Li C H, Zhang Y B, et al. Spectral analysis and power spectral density evaluation in Al2O3

nanofluid minimum quantity lubrication milling of 45 steel[J]. Int J Adv Manuf Technol, 97 (1–4) (2018), pp.

-145. doi.org/10.1007/s00170-018-1942-9.

Zhang J C, Li C H, Zhang Y B, et al. Experimental assessment of an environmentally friendly grinding

process using nanofluid minimum quantity lubrication with cryogenic air[J]. Journal of Cleaner

production. (2018), 193(20): 236- 248. doi.org/10.1016/j.jclepro.2018.05.009.

Zhang Y B, Li C H, Yang M, et al. Experimental evaluation of cooling performance by friction coefficient and

specific friction energy in nanofluid minimum quantity lubrication grinding with different types of vegetable

oil[J]. Journal of Cleaner Production, 2016, 139: 685-705. doi.org/10.1016/j.jclepro.2016.08.073.

Tawakoli T, Hadad M J, Sadeghi M H, et al. An experimental investigation of the effects of workpiece and

grinding parameters on minimum quantity lubrication-MQL grinding[J]. International Journal of Machine

Tools & Manufacture, 2009, 49(12-13): 924-932. doi.org/10.1016/j.ijmachtools.2009.06.015.

Lee P H, Nam T S, Li C, et al. Environmentally-Friendly Nano-fluid Minimum Quantity Lubrication (MQL)

Meso-scale Grinding Process Using Nano-diamond Particles[C]// International Conference on Manufacturing

Automation. IEEE Computer Society, 2010:44-49. doi.10.1109/ICMA.2010.27.

JIA D Z, ZHANG N Q, LIU B, et al. Particle size distribution characteristics of electrostatic minimum

quantity lubrication and grinding surface quality evaluation[J]. Diamond & Abrasives Engineering, 2021,

(3): 89-95.

LIU M Z, LI C H, CAO H J, et al. Research Progress and Application of Cryogenic Minimum Quantity

Lubrication Machining Technology[J]. China Mechanical Engineering, 2022.

ZHANG Y B, LI C H, JIA D Z, et al. Experimental Evaluation of the Workpiece Surface Quality of

MoS2/CNT Nanofluid for Minimal Quantity Lubrication in Grinding[J]. Journal of Mechanical Engineering,

, 54(01): 161-170.

YANG M, LI C H, ZHANG Y B, et al. A New Model for Predicting Neurosurgery Skull Bone Grinding

Temperature Field[J]. Journal of Mechanical Engineering, 2018, 54(23): 215-222.

YANG M, LI C H, ZHANG Y B, et al. Theoretical Analysis and Experimental Research on Temperature Field

of Microscale Bone Grinding under Nanoparticle Jet Mist Cooling[J]. Journal of Mechanical Engineering,

, 54(18): 194-203.

WAGN X M, ZHANG J C, WANG X P, et al. Temperature Field Model and Verification of Titanium Alloy

Grinding under Different Cooling Conditions[J]. China Mechanical Engineering, 2021, 32(05): 572-578+586.

He F, Zhuang L Z, He G Y, et al. A356 Aluminum Alloy for Automobile Wheel Hubs-Research Progress and

Inflence of Alloying Elements on Its Microstructure and Properties[J]. Foundry, 2021, 70(04): 431-437.

Shi Z L. An Analysis on the Perspective of China's Automobile's Hubcap Industry[J]. Economic Survey,

(03): 61-64. doi.10.15931/j.cnki.1006-1096.2004.03.019.

Niu T, Sun J J, Zhang Y Y. Technical Analysis of Automatic Production Line for Flexible Machining of

Automobile Wheel Hubs[J]. Machine Building & Automation, 2017, 46(06): 216-218.

doi.10.19344/j.cnki.issn1671-5276.2017.06.060

Zheng W, Sun J J, Niu T,et al. Design and Analysis of A Kind of Automobile Hub Flexible Machining

Fixture[J]. Machine Design & Research, 2019, 35(02): 132-136. doi.10.13952/j.cnki.jofmdr.2019.0160

Zheng W, Sun J J,Ma C B, et al. Analysis on the positioning error of the automotive wheel hub’sflexible

machining fixture[J]. Journal of Machine Design, 2021, 38(03): 46-52. doi.10.13841/j.cnki.jxsj.2021.03.007.

Hou Y T, Li L C, Gu J N,et al. Vehicle Hub Type Recognition Based on SURF Features[J]. Machinery

Design & Manufacture, 2021(08): 5-7+12. doi.10.19356/j.cnki.1001-3997.2021.08.002.

Zhao H W, Zhao Y C, Qi X Y, et al. Research on Surface Defect Inspection Algorithms of Automobile Hub

Based on Deep Learning[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2019(11): 112-

doi.10.13462/j.cnki.mmtamt.2019.11.028.

Zhu C P, Yang Y B. Online Detection Algorithm of Automobile Wheel Surface Defects Based on Improved

Faster-RCNN Model[J]. Surface Technology, 2020, 49(06): 359-365. doi.10.16490/j.cnki.issn.1001-

2020.06.044.

Liang Y F, Zhu Z K. The design and study of the overall architecture of the intelligent manufacturing system

for the automobile hub production line[J]. Industrial Instrumentation & Automation, 2018(04): 61-64.

doi.10.3969/j.issn.1000-0682.2018.04.015.

Yin C T. Auto wheel manufacturing system design based on the CPS[J]. Manufacturing Technology &

Machine Tool, 2017(10): 142-146. doi:10.19287/j.cnki.1005-2402.2017.10.033.

Shi L. Design and analysis of flexible Machining fixture for automobile wheel hub under cutting Force[J].

Internal Combustion Engine & Parts,2020(15):75-76.doi.10.19475/j.cnki.issn1674-957x.2020.15.029.

Mao J H,Zhang Y X,Jiang L W, et al.Analysis on microstructure and properties of A356 cast aluminum alloy

wheel hub[J].China Metallurgy,2021,31(05):66-71. doi. 10.13228/j. boyuan. Issn1006-9356. 20200655.

Wang M L,Zuo J M,Zhu H,et al.Modeling and dynamic simulation of high speed cutting temperature field

based on 3-D finite element analysis[J]. Modern Manufacturing Engineering, 2010(02): 80-84.

doi.10.16731/j.cnki.1671-3133.2010.02.003.

Davim J P, Sreejith P S, Gomes R, et al. Experimental studies on drilling of aluminium (AA1050) under dry,

minimum quantity of lubricant, and flood-lubricated conditions[J]. Proceedings of the Institution of

Mechanical Engineers Part B Journal of Engineering Manufacture, 2006, 220(10): 1605-1611.

doi.org/10.1243/09544054JEM557.




DOI: https://doi.org/10.37628/ijpe.v8i2.1483

Refbacks

  • There are currently no refbacks.