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Abstract 

Gear is a very important machine component which finds use in most of the machines which 

requires some sort of power transmission or reduction. Unattended faults in gears can be 

catastrophic for the machine leading to halts in production and consequent economic loss. 

The requirement for a gear fault detection and diagnosis system is thus emphasized. 

Vibration signals are often used in fault diagnosis applications along with Fast Fourier 

transform method. However it is not effective with non-stationary signals like those obtained 

from gears in motion. Therefore, development of new methodologies to obtain diagnostic 

information from such signals is required. This paper details the use of vibration signals 

obtained from gears in good and simulated faulty conditions after performing preprocessing 

with Variational Mode Decomposition (VMD). VMD decomposes the vibration signals into 

various modes by identifying a compact frequency support around its central frequency so 

that adding all the modes reconstructs the original signal. Alternating Direction Multiplier 

Method (ADMM) is used in VMD to find the intrinsic mode functions. Descriptive statistical 

features extracted from VMD preprocessed signals, classified using Naïve Bayes and Bayes 

Net classifiers, and corresponding classification accuracies were calculated. The results 

were compared with the accuracy obtained from the statistical features extracted from the 

raw signal and decision tree classifier. 
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INTRODUCTION 

Helical gearboxes are vital components of 

various machineries. They are used to run 

the machines at different gear ratios and 

for seamless transmission of power. 

Typical failures in helical gearboxes are 

caused by localized defects that arise 

when a part of the gear material with 

sufficient size is dislodged during 

operation of the gear. This happens mostly 

due to fatigue cracking under cyclic 

contact stressing. 
[1]

 Impending failures of 

gears are therefore often alerted based on 

the early detection of localized defects. 

The severity of localized defects in gears 

cannot be measured while in operation.  

 

Hence, various physical parameters like 

sound, vibration, wear debris and acoustic 

emission are measured for the detection 

and diagnosis of faults right from its early 

stages. The vibration signals of the defects 
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are often in disguise due to sound and 

vibrations produced by the operation of 

the machines. 
[2–4]

 

 

Transient excitations are observed in 

vibrations as a result of the impacts caused 

by localized faults in helical gears. When 

Fast Fourier transform (FFT) of these 

vibration signals are taken, it is observed 

that the frequency components are 

distributed due to overlapping of 

harmonics and also the presence of noise.  

 

The frequency component itself is 

changed due to non-stationary nature of 

the signals. Due to these reasons 

conventional measurement methods for 

statistical parameters may not be effective 

for non-stationary signals obtained from 

gears in motion. 
[5]

 Therefore many 

researchers shifted their attention to signal 

processing methods to improve fault 

classification tools. 

 

Pennachhi and Ricci used Empirical Mode 

Decomposition (EMD) to detect incipient 

faults in gears with intrinsic mode 

functions (IMF). 
[6]

 EMD lacks a 

mathematical theory foundation. N. 

Saravanan et al. 
[7]

 presented the 

effectiveness of helical gearbox fault 

diagnosis with wavelet based features 

using Proximal Support Vector Machines 

(PSVM) and Artificial Neural Network 

(ANN).  

 

J48 algorithm was used to classify 

statistical features obtained from Morlet 

wavelet coefficients and the dominant 

features were given as input to train and 

test PSVM and ANN, and their 

classification accuracies were compared. 

Wavelets are able to represent signals in a 

Time-Frequency plane, but it has certain 

limitations. 
[8,9]

 A new processing 

technique was developed in order to 

overcome the drawbacks of other 

techniques. It decomposed the signals into 

various modes or intrinsic mode functions 

using calculus variations. These modes 

have compact frequency support around a 

central frequency. Such central 

frequencies were identified using 

Alternating Direction Multiplier Method 

(ADMM) as an optimization tool. Various 

components of a signal can therefore be 

identified by the decomposition of a 

signal.  

 

This study focuses on Variational Mode 

Decomposition (VMD) which is a new 

algorithm that extracts different modes 

present in the signal. An attempt is made 

to exploit vibration signals in order to 

diagnose faults in helical gearboxes. 

Vibration signals obtained were first 

preprocessed using VMD to find the 

modes and IMFs and then various 

descriptive statistical features like mean, 

standard deviation, kurtosis and variance 

were extracted.  

 

These extracted features were classified 

using Naïve Bayes classifier and the 

obtained classification accuracy was 

compared with that obtained using raw 

vibration signals without any 

preprocessing. 

 

EXPERIMENTAL SETUP AND 

PROCEDURE 

The experimental setup consists of a 5 hp 

two-stage helical gearbox which is driven 

by a 5.5 hp 3-phase induction motor 

having a rated speed of 1440 rpm. For this 

study the speed is set at 80 rpm, i.e. the 

speed of the 1
st
 stage of the motor is 80 

rpm.  

 

The speed of pinion shaft in the 2
nd

 stage 

of the gearbox becomes 1200 rpm with a 

step up ratio of 1:15. Figure 1 illustrates 

the experimental setup and Table 1 gives 

the specifications of the helical gearbox. 
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Fig. 1: Experimental Set Up. 

 

Table 1: Specifications of Helical Gearbox. 

 1
st
 Stage 2

nd
 Stage 

Number of teeth 44/13 73/16 

Pitch circle diameter (mm) 198/65 202/48 

Pressure angle 20° 20° 

Helix angle 20° 15° 

Modules 4.5/5 2.75/3 

Shaft speed (rpm) 80 (input) 1200 (output) 

Mesh frequency (Hz) 59 320 

Step-up ratio 1.15 

Rated power (hp) 5 

Transmitted power (hp) 2.6 

 

A DC motor (used as generator) is 

connected to the pinion and generates 

2 kW powers, which gets dissipated in a 

resistor bank. Therefore the actual load on 

the gearbox is only 2.6 hp, i.e., 52% of the 

rated 5 hp power. Utilization of load 

varies from 50% to 100% in industries. 

Additional torsional vibrations arising due 

to torque fluctuation in traditional 

dynamometer are avoided by the use of 

DC motor and resistor bank. 

 

Backlash in the system is limited to the 

gears by the use of tire couplings amongst 

the electrical machines. Motor, generator 

and gearbox are mounted on I-beams 

which are anchored on to massive 

foundation. Bruel and Kjaer accelerometer 

installed close to the test gear measures 

the vibration signals. The signals are 

sampled at a frequency of 8.2 kHz. 

Figure 2 shows the experimental setup 

with sensors and equipment. 

 

Coupling  Coupling  

  Resistor 
bank 

DC 
motor 

Microphone 
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Two stage 
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Fig. 2: Photograph: Experimental Set-Up with Equipment and Sensors. 

 

A new gear box has an overhaul time 

period of more than one year. Study of 

fault detection procedures without seeded 

fault trials is very difficult. Local faults 

found in a gearbox can be categorized into 

three namely, surface wear, cracked tooth, 

spalling and loss of part of tooth due to 

breakage at a point on root or tip. Three 

different methods may be followed to 

simulate faults in gears namely, grinding, 

electric discharge machining (EDM) and 

adding iron particles in gearbox lubricant 

and overloading the gearbox (accelerated 

test condition). Partial teeth removal is the 

simplest method and hence was followed 

for this study. Partial tooth break which is 

common in many industrial applications is 

thus simulated. 

 

Feature Extraction 

Descriptive statistical parameters such as 

mean, standards deviation, kurtosis and 

variance were computed from the 

vibration signals to serve as features. 

These are termed as ‘statistical features’ 

here. Given below are brief descriptions 

on the extracted features. 

Mean: It is the arithmetic average of all 

points in the signal. 

1

Mean
n

i
i

x


  

I. Standard deviation: It is a measure of the 

effective energy of the vibration signal. 

 22

Standard Deviation 
( 1)

x x

n n





   

II. Kurtosis: It indicates the spikiness or 

flatness of the signal. The kurtosis value is 

very low for a bearing in normal condition 

and high for bearing in faulty condition. 
4 2( 1) 3( 1)

Kurtosis
( 1)( 2)( 3) ( 2)( 3)

ix xn n n
n n n s n n

              


 

III. Sample variance: It is the variance of the 

signal points. 

 22

Sample Variance 
( 1)

x x

n n





   

Variational Mode Decomposition 

VMD decomposes the signal into various 

modes or intrinsic mode functions using 

calculus of variation.  Each mode of the 

signal is assumed to have compact 

frequency support around a central 

frequency. VMD tries to find out these 

3-phase 

Induction Motor 

Two stage gearbox 

FFT analyzer 

Resistor bank 

D.C. motor 

Microphon

e 

Accelerometer  
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central frequencies and intrinsic mode 

functions centered on those frequencies 

concurrently using an optimization 

methodology called ADMM. The original 

formulation of the optimization problem is 

continuous in time domain. 

 

VMD is formulated as; Minimize the sum 

of the bandwidths of k modes subject to 

the condition that sum of the k modes is 

equal to the original signal. The unknowns 

are k central frequencies and k functions 

centered at those frequencies. Since part of 

the unknowns is function, calculus of 

variation is applied to derive the optimal 

functions. 

  

Bandwidth of an AM-FM signal primarily 

depends on both, with the maximum 

deviation of the instantaneous frequency 

  kk tf   max~  and the rate of 

change of instantaneous frequency. 

Dragomiretskiy and Zosso proposed a 

function that can measure the bandwidth 

of an intrinsic mode function ( )ku t . At first 

they computed Hilbert transform of ( )ku t .  

Let it be ( )H
ku t . Then, it formed an 

analytic function ( ) ( )H
k ku t ju t . The 

frequency spectrum of this function is one 

sided (exist only for positive frequency) 

and assumed to be centered on k . By 

multiplying this analytical signal with
kj te 

, the signal is frequency translated to 

be centered at origin. The integral of the 

square of the time derivative of this 

frequency translated signal is a measure of 

bandwidth of the intrinsic mode function

( )ku t .   

Let   ( ) ( ) ( ) kj tM H
k k ku t u t ju t e    

It is a function whose spectrum is around 

origin (baseband).  Magnitude of time 

derivative of this function when integrated 

over time is a measure of bandwidth.  

Hence, 

     ( ) ( )M M
k t k t ku t u t dt     

 ( ) ( ) ( )M
t k t k

j
u t t u t

t



         .  

where, 

The integral can also expressed as a norm.  
2

2

( ) ( )k t k

j
t u t

t
 


            

The sum of bandwidths of k modes is 

given by 
1

K

k
k




  

The resulting variational formulation is as 

follows: 
2

,
2

min ( ) ( ) k

k k

j t
t ku

k

j
t u t e

t








           
   


 

. . k
k

st u f
 

Where f  is the original signal.  

The augmented Lagrangian multiplier 

method converts this into an unconstrained 

optimization problem as follows: 

 

 
2 2

22

, , ( ) ( ) ,kj t
k k t k k k

k k k

j
L u w t u t e f u f u

t
   


             

   
  

 
 

In ADMM philosophy, one variable at a 

time is solved assuming all others are 

known. 

Hence, the formula for updating ku  at the 

‘n+1’ the iteration is as follows: 

Update for u terms; 

 
2 2

1

( ) 22

argmin ( ) ( ) ,k

k

j tn
k t k i i

u t i i

j
u t u t e f u f u

t
  


              

   
 
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By the absorbing the last inner product which is basically ( ) ( ) ( )i
i

t f t u t dt  
 

 
  in to the 

term; 
2 2

2

( ) ( )i i
i i

f u f t u t dt
 

   
 

 
,   then 

2 2

2 2

,
2i i i

i i i

f u f u f u
       

 
 

Therefore, 
2 2

1

( ) 22

argmin ( ) ( )
2

k

k

j tn
k t k i

u t k i

j
u t u t e f u

t
  


             

   
 

 
 

This problem can be solved in spectral 

domain by noting the fact that norm in 

time domain is same as norm in frequency 

domain.  

The following results are used in Fourier 

transform. 

 

 

   ˆ ˆ( ) ( ) ( ) ( )k k t k ku t u u t j u    
 

  ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) 1 sgn ( )k k k k k k

j j
u t u t u t u t u t u

t t
   

 
          
   

Note that, for negative,   ˆ1 sgn ( ) 0ku    

and for positive ,    ˆ ˆ1 sgn ( ) 2 ( )k ku u     

     ˆ ˆ( ) ( ) 1 sgn ( ) ( ) ( ) 1 sgn ( )kj t
k k k k k k k k

j j
u t u t u u t u t e u

t t
     

 
            

 
 

Therefore 

  
2

21

2ˆ ( )
2

ˆ
ˆˆ ˆargmin 1 sgn ( )

2k

n
k k k k i

u i

u j u f u


              

Replacing k     

  
2

21

2ˆ ( )
2

ˆ
ˆˆ ˆargmin ( ) 1 sgn ( )

2k

n
k k k i

u i

u j u f u


            

 

In the above expression, the first term vanishes for negative frequencies. 

          2

2
ˆ ˆ ˆ1 sgn ( ) ( ) 1 sgn ( ) ( ) 1 sgn ( )k k k k k k k

w

u j u j u d                   

=
22

0

ˆ4( ) ( )k ku d   


  
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Second term is symmetric around origin, therefore;  

 
2

02

ˆ ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ( ) 2 ( )

2 2 2 2 2i i i i i
i i i i i

f u f u f u d f u f u d
       

 



      
                             

     

Also 
ˆ

ˆ ˆ( )
2i

i

f u


 
   

 
  being a complex number 

ˆ
ˆ ˆ( )

2i
i

f u


 
   

 


ˆ
ˆ ˆ

2i
i

f u
 

  
 
 
  = 

2ˆ
ˆ ˆ

2i
i

f u


   

 

Where  represent magnitude of the complex number. Therefore,   

 
2

21 2

ˆ ( ), 0 0

ˆ
ˆˆ ˆ ˆargmin 4 ( ) ( ) 2

2k

n
k k k i

u i

u u f u d
 

   






 
     
 
 

  

 

Here, unknown is a function. Hence, apply Euler Lagrangian condition to obtain the solution. 

 
2

22
ˆ

ˆˆ ˆ 4( ) ( ) 2
2k k i

i

Let F u f u
        

2
ˆ

ˆˆ ˆ0 8 ( ) 4 ( 1) 0
ˆ 2k k i

ik

dF
u f u

du
 

 
         

 
  

 2 2
ˆ ˆ

ˆ ˆˆ ˆ ˆ ˆ ˆ2 ( ) 1 2 ( )
2 2k k k i k k i

i k i k

u u f u u f u
    

 

   
                 

   
   

 
1

2

ˆ 1ˆˆ ˆ
2 1 2( )

n
k i

i k k

u f u


 




 
       

  ,  0  

Update for k  s 

2

1

2

argmin ( ) ( ) k

k

j tn
k t k

j
t u t e

t



 


          

   
 

   21

2
ˆargmin 1 sgn ( )

k

n
k k k kj u


           

     21

2
ˆargmin 1 sgn ( )

k

n
k k kj u


         

 2 21

0
ˆargmin ( )

k

n
k k ku d


    

    

Here 1n
k
  is given by the solution of    2 2

0
ˆ ( ) 0k k

k

d
u d

d
   




   

  2

0
ˆ2 ( ) 0k ku d   


    
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2

1 0

2

0

ˆ ( )

ˆ ( )

k
n
k

k

u d

u d

  


 




 



 

Update for   (Lamda) 

 1 1( )n n n
kf u t       

Final algorithm for VMD: 
1 1 1̂ˆˆinitialize , , , n 0k ku     

repeat 

1n n   

for 1:  dok K  

ˆUpdate  for all 0ku 

1

1
2

ˆˆ ˆ ˆ
2ˆ

1 2 ( )

n
n n
i ii k i kn

k n
k

f u u
u



 


 

  


 

 
 

Update :k  

21

1 0

21

0

ˆ ( )  

ˆ ( )

n
k

n
k

n
k

u d

u d

  


 













 

end for  

Dual ascent for all 0:  

1 1ˆˆ ˆ ˆ( )n n n
k

k

f u     
2 21

2 2
ˆ ˆ ˆuntil convergence: n n n
k k kk

u u u     

 

Discretization of Frequency 

It is first assumed that length of the 

mirrored signal in the time domain is 1. If 

total length of the mirrored signal in terms 

of number of discrete values is T, then 

sampling interval is 1/T. 

 

The discrete frequency is assumed to vary 

from –0.5 to +0.5 so that it represents 

normalized discrete frequency. It must be 

noted that algorithm construct Fourier 

transform of different mode function 

values for positive frequencies only.  The 

other half can be easily created by 

conjugating and reflecting on the left side. 

 

Once, all the mode functions in the 

frequency domain are obtained, then 

obtain the time domain mode functions by 

taking inverse Fourier transform. These 

mode functions correspond to mirrored 

signal. Then cut off the appended 

(reflected portions) part of the signal to 

obtain the desired intrinsic mode 

functions. 

 

Classifier 

All sample training instances are mapped 

into different groups by a classifier. In the 

present study the instances are classified 

as 10%, 20%, 30%, 40%, 80%, 100% 

faulty and normal conditions. 60 training 

instances are made available for each 

condition making a total of 420 instances. 

Equal number of training data ensures that 

the learning algorithm is no biased for any 

condition. 

Naïve Bayes 

In case of Naïve Bayes algorithm, the 

attributes A1, A2…An are all assumed to be 
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conditionally independent of one another 

given B. Thereby the representation of 

P(A|B) and the problem of estimating it 

from the training data are simplified. We 

have for n attributes of A which re 

conditionally independent of B, 

 

 

                                                           ∏           
                                        Eq. (1) 

 

 

When Ai and B are Boolean variables we 

require 2n parameters to define 

P(A1=Aik|B=bj) for necessary i, j, k. This 

is a significant reduction. Then 2(2
n 
– 1) 

parameters are needed to characterize 

P(A|B) for the case when the previously 

stated assumption is not made. The main 

objective of this is to train a classifier so 

as to provide the distribution possible 

values of B for each instance of A. The 

following expression gives the probability 

that B will take on its k
th

 possible value. 

 

                                                  
 (    )             

∑  (    )              
                           Eq. (2) 

 

For all possible values of bj of B, the sum 

is taken and on applying the above 

discussed conditions, the equation for 

Naïve Bayes is obtained. 

 

                                                   
 (    )∏            

∑  (    )∏             
                            Eq. (3) 

 

Bayes Net 

Bayesian Network is a probabilistic 

graphical model. It is a directed acyclic 

graph (DAG), which implies that it is a 

network of random variables that make the 

node and the nodes are related to their 

conditional dependencies. 

 

 (  |           ) for each node Xi 

                                                      ∏               
 
                                   Eq. (4) 

                                                   ∏                  
 
                                                     Eq. (5) 

For                        
  

The joint probability distribution is 

computed using chain rule. Over fitting 

data and accommodation of missing 

values are key advantages of using 

Bayesian network. 

 

RESULT AND DISCUSSION 

Vibration signals were collected for 

normal, 10%, 20%, 30%, 40%, 80% and 

100% faulty conditions of helical gearbox. 

A total of 420 samples were recorded with 

60 from each class. Among these 420 

signals, 350 were used for training and 

remaining 70 were used for testing. 

Statistical features were considered as 

features and these serve as input to the 

algorithm. The required output of the 

algorithm is the classification into the 

above said faulty or normal conditions.  

 

The input and resultant output together 

forms the dataset- Classification of non- 

preprocessed signals using Naïve Bayes 

and Bayes net classifiers: 

 

Vibration signals without any VMD 

preprocessing performed, were used for 

this classification so that the result can be 
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compared with those obtained using VMD 

preprocessing, and Naïve Bayes and 

Bayes Net classifiers on the same 

vibration signals. M. Amarnath et al. 
[11]

 

conducted a study to obtain maximum 

classification accuracy using Naïve Bayes 

and Bayes Net classifiers on statistical 

features extracted from raw vibration 

signals. The confusion matrix obtained 

using Naïve Bayes and Bayes Net 

classifiers in the study are given in Table 2 

and Table 3, respectively. 

 

Table 2: Confusion Matrix for Naïve Bayes Classifier Using Raw Vibration Signals. 

Classified 

actual as 

10% 

fault 

20% 

fault 

30% 

fault 

40% 

fault 

80% 

fault 

100% 

fault 
Good 

10% fault 49 0 0 0 2 9 2 

20% fault 10 46 2 2 0 0 0 

30% fault 0 4 49 1 1 1 6 

40% fault 1 0 3 55 0 3 1 

80% fault 2 0 0 0 62 0 0 

100% fault 8 0 0 7 0 49 0 

Good 1 0 2 4 0 1 56 

 

 

Table 3: Confusion Matrix for Bayes Net Classifier Using Raw Vibration Signals. 

Classified 

actual  as 

10% 

fault 

20% 

fault 

30% 

fault 

40% 

fault 

80% 

fault 

100% 

fault 
Good 

10% fault 50 2 0 0 1 7 2 

20% fault 10 46 2 2 0 0 0 

30% fault 1 5 45 3 1 0 7 

40% fault 1 0 4 54 0 3 1 

80% fault 2 0 0 0 62 0 0 

100% fault 8 1 0 8 0 46 1 

Good 0 1 2 1 0 4 56 

 

It was observed that 83.37% classification 

accuracy was obtained using Naïve Bayes 

classifier and 81.77% classification 

accuracy was obtained using Bayes Net 

classifier when statistical features were 

extracted from raw vibration signals 

without any preprocessing performed. 

Effect of Number of Features Selected 

from VMD Preprocessed Signals 

The vibration signals were preprocessed 

with VMD to find its frequency 

components, also called as Intrinsic Mode 

Functions (IMF). The IMFs were arranged 

in ascending order of frequencies with 

every n
th

 mode having the maximum 

information content and highest 

frequency.  

 

A total of 24 features were extracted from 

the vibration signals which could prove 

helpful in differentiating faulty and normal 

conditions, however some of these 

features may not contribute much to the 
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classification and can be excluded from 

the classification.  

 

The 24 features are the mean, standard 

deviation, kurtosis and variance of six 

modes. This leads to two advantages, viz. 

reduced computation time and potentially 

better classification accuracy.  

 

Sugumaran et al. 
[10] 

have elaborated the 

use of J48 decision tree to determine the 

rank of importance of the statistical 

features by visualizing the tree by depth 

first technique.  

 

Implementing the above mentioned 

technique, the following features were 

obtained in descending order of priority. 

1. Variance of 6
th

 mode. 

2. Variance of 3
rd

 mode. 

3. Mean of 3
rd

 mode. 

4. Mean of 2
nd

 mode. 

5. Mean of 6
th

 mode. 

6. Standard deviation of 4
th

 mode. 

7. Standard deviation of 2
nd

 mode. 

8. Variance of 4
th

 mode. 

9. Variance of 1
st
 mode. 

10. Mean of 5
th

 mode. 

11. Mean of 1
st
 mode. 

12. Kurtosis of 6
th

 mode. 

13. Variance of 2
nd

 mode. 

14. Standard deviation of 1
st
 mode. 

15. Kurtosis of 3
rd

 mode. 

16. Kurtosis of 1
st
 mode. 

17. Kurtosis of 2
nd

 mode. 

18. Kurtosis of 4
th

 mode. 

 

Table 4: Number of Selected Features and 

Classification Accuracy with Naïve  

Bayes Classifier. 

No. of selected 

features 

Classification 

accuracy (%) 

1 47.15 

2 75.71 

3 81.43 

4 81.43 

5 81.43 

6 90.00 

7 87.14 

8 87.14 

9 90.00 

10 88.57 

11 90.00 

12 91.43 

13 90.00 

14 87.14 

15 90.00 

16 88.57 

17 91.43 

18 94.29 

19 91.43 

20 91.43 

21 91.00 

22 90.00 

23 90.00 

24 90.00 
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Fig. 3: Classification Accuracy vs. Number of Features selected for Classification Using 

Naïve Bayes. 

 

  

Fig. 4: Classification Accuracy vs. Number of features Selected for Classification  

Using Bayes Net. 

 

The remaining six features were not used 

in J48 classifier and hence can be used in 

random order. A study was conducted on 

the effect of number of features selected 

on the classification accuracy obtained 

with Naïve Bayes classifier and the results 

are given in Table 4.  

 

The same was conducted with Bayes Net 

classifier and the results are given in 

Table 5. 

 

It is evident from Figure 3 that on using 

Naïve Bayes classifier, maximum 

classification accuracy of 94.29% was 

obtained when the number of selected 

features is taken as 18, and on using Bayes 

Net classifier, highest accuracy of 94.29% 

was obtained when 19 features where 

selected (Figure 4). These 18 features 

were taken in the order previously 

mentioned and the 19
th

 feature was chosen 

randomly. 
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Table 5: Number of Selected Features and 

Classification Accuracy with  

Bayes Net Classifier. 

No. of selected 

features 

Classification 

accuracy (%) 

1 47.15 

2 75.71 

3 80.00 

4 81.43 

5 81.43 

6 90.00 

7 87.14 

8 88.57 

9 91.43 

10 90.00 

11 91.43 

12 90.00 

13 92.86 

14 88.57 

15 88.57 

16 88.57 

17 90.00 

18 92.86 

19 94.29 

20 92.86 

21 90.00 

22 90.00 

23 90.00 

24 90.00 

Classification of VMD preprocessed 

signals using Naïve Bayes classifier. 

The statistical features extracted and 

selected were classified using Naïve Bayes 

classifier and the results are presented in 

Table 6. A maximum classification 

accuracy of 94.29% was obtained when 

supervised discretion was used to convert 

numeric attributes to nominal ones. Using 

a kernel estimator for numeric attributes 

rather than a normal distribution increased 

the classification accuracy from 38.57% to 

42.86%. Table 7 shows the confusion 

matrix for Naïve Bayes classification 

when supervised discretion was used. 

 

Table 6: Classification Accuracy 

Obtained with Naïve Bayes Classifier. 

Use 

kernel 

estimator 

Use 

supervised 

discretization 

Classification 

accuracy (%) 

False False 38.5715 

False True 94.2857 

True False 42.8571 

 

 

 

 

Table 7: Confusion Matrix for Naïve Bayes and Bayes Net Classifiers. 

Classified 

actual as 

10% 

fault 

20% 

fault 

30% 

fault 

40% 

fault 

80% 

fault 

100% 

fault 
Good 

10% fault 11 0 0 0 0 0 1 

20% fault 0 11 0 0 0 0 0 

30% fault 0 1 9 0 0 0 1 

40% fault 0 0 0 9 0 0 0 

80% fault 0 0 0 0 6 0 0 

100% fault 0 0 0 0 0 8 1 

Good 0 0 0 0 0 0 12 

 

As evident from the confusion matrix in 

Table 4, there were four misclassifications 

out of the 70 test samples giving a 

classification accuracy of 94.29%. This is 

a major improvement over the 83.37% 

accuracy obtained with Naïve Bayes 

classifier and raw signals. Thus the 

advantage of using VMD preprocessing is 

evident from this study. Classification of 

VMD preprocessed signals using Bayes 

net classifier. The statistical features 

extracted and selected were classified 
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using Bayes Net classifier after 

optimization of its parameters. The 

corresponding confusion matrix for Bayes 

Net classifier was observed to be same as 

that obtained using Naïve Bayes classifier 

(Table 5). A maximum classification 

accuracy of 94.29% was obtained. The 

parameters used for Bayes Net classifier 

are given in Table 8. 

 

Table 8: Parameters used for Bayes Net 

Classifier. 

Parameter Set value 

Estimator 
Simple 

Estimator 

Search algorithm K2 

K2 score type Bayes 

Initial network for 

structure learning 

Bayes 

network 

 

 

 
Fig. 5: Classification Accuracy vs. Alpha Value Used in Simple Estimator. 

 

Table 9: Max No. of Parents used in K2 

Search Algorithm and Corresponding 

Classification Accuracy Achieved. 

Maximum no. 

of parents 

Classification 

accuracy (%) 

1 94.29 

2 91.43 

3 91.43 

100000* 91.43 

 

Figure 5 illustrates the variation in 

classification accuracy when the value of 

alpha used in Simple Estimator is varied 

from 0.1 to 1.0. Alpha is used for 

estimating the probability tables and can 

be interpreted as the initial count on each 

value. As evident from Figure 5 maximum 

classification accuracy of 94.29% was 

attained when the alpha was set at 0.1 or 

from 0.3 to 0.7.  

Hence, an alpha value of 0.5 (default 

value) was set for this study. Table 9 

shows the variation in classification 

accuracy for different values of maximum 

number of parents a node in the Bayes net 

can have. When initialized as Naive 

Bayes, setting this parameter to one result 

in a Naive Bayes classifier. When set to 

two, a Tree Augmented Bayes Network 

(TAN) is learned, and when set >2, a 

Bayes Net Augmented Bayes Network 

(BAN) is learned.  

 

By setting it to a value much larger than 

the number of nodes in the network (the 

default of 100000 guarantees this), no 

restriction on the number of parents is 

enforced. It is observed that maximum 

accuracy is achieved by setting the 

number of parents to one. 
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SUMMARY OF RESULTS 

 

Table 10: Comparison of Classification Accuracy Attained with and Without VMD 

Preprocessing of Signals. 

Classifier 
Classification accuracy (%) 

Without preprocessing With VMD preprocessing 

Naïve Bayes 83.77 94.29 

Bayes Net 81.77 94.29 

 

Table 10 compares the classification 

accuracy obtained on classifying raw 

signals and signals which have undergone 

VMD preprocessing using Naïve Bayes 

and Bayes Net classifiers. It is observed 

that there is an improvement of up to 

12.52% in classification accuracy when 

VMD preprocessing is performed on the 

same signals. This establishes the 

superiority of the use VMD preprocessing 

fault diagnosis tools for helical gearbox. 

 

CONCLUSION 

A new signal processing technique called 

VMD along with Naïve Bayes and Bayes 

net classifiers were presented in this paper. 

In order to benchmark the new VMD 

preprocessed features in classification, 

statistical features extracted from raw 

signals without preprocessing along with 

Naïve Bayes and Bayes Net classifiers 

were used. The superiority of VMD 

preprocessed features in classification was 

established on comparing the previously 

obtained classification accuracies with 

those attained using Naïve Bayes and 

Bayes Net classifiers on the statistical 

features extracted from VMD 

preprocessed signals.  

 

From the observed significant increase in 

classification accuracy, it can be 

concluded that VMD preprocessed signals 

with Naïve Bayes and Bayes Net 

classifiers perform with greater 

classification accuracy in helical gearbox 

fault diagnosis. 
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