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Abstract 

Rolling element bearings are one of the most commonly used machine elements in 

engineering industry. Fault detection and diagnosis of rolling element bearings is essential 

for prevention of malfunction and failure during operation.  The present work deals with 

rolling element bearing fault diagnosis by using Support Vector Machine (SVM) and 

Artificial Neural Network (ANN). Four types of bearing conditions are considered in the 

present analysis: inner race fault (IR), outer race fault (OR), ball fault (BF) and healthy 

bearing (HB). The vibration signals from bearing housing are acquired through 

accelerometers. Since the vibration signal from faulty bearing is non-stationary and non-

linear Empirical Mode Decomposition (EMD) is a suitable method for analyzing such 

signals. The vibration signal is decomposed into intrinsic mode functions (IMF) by using 

EMD method. Statistical features like Shannon Entropy and Approximate Entropy from the 

IMFs are extracted for training and testing of the SVM and ANN. The trained models are 

able to classify different kinds of faults with good accuracy.  
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INTRODUCTION 

Rolling element bearings are extensively 

used in vast majority of rotating 

equipment. Rolling element bearings 

consist of inner race, outer race, cage and 

ball. Due to excessive wear or damage in 

these parts the bearing exhibits high 

vibration and may fail during operation. 

Therefore, condition monitoring based on 

vibration analysis of bearings is essential 

for fault diagnosis and prevention of 

malfunction of machines. 

Condition monitoring of faulty rolling 

element bearing using vibration signal has 

been carried out by many authors. The 

vibration signal used for fault diagnosis 

mainly falls into three categories (i) time 

domain signal; 
[1-3, 8]

 (ii) frequency domain 

signal 
[3, 10, 20]

 and (iii) time-frequency 

domain signal. 
[11-13]

 Then, many pattern 

recognition techniques such as ANN 
[1-2, 6, 

12-13]
, SVM, 

[12-13]
 ANFIS, 

[3, 15]
 HMM 

[19]
 

etc. had been used for fault diagnosis of 

rolling element bearing. 

 

Samanta and Al-Balushi 
[1]

 used ANN for 

fault diagnosis of rolling element bearing 

by using statistical features extracted 

directly from time-domain vibration signal 

segments. Subrahmanyam and Sujatha 
[2]

 

used neural networks for the diagnosis of 

localized defects in ball bearings. Lei et 

al.
[3]

 proposed a new fault diagnosis 

method based on an improved distance 

evaluation technique and adaptive neuro-

fuzzy inference system (ANFIS). They 

used time-domain, frequency-domain and 

empirical mode decomposition (EMD) 
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energy entropies as fault features and 

using the proposed improved distance 

evaluation technique the most superior 

features are selected. Altmann and 

Mathew 
[4]

 presented a novel method for 

detection and diagnosis of slow speed 

rolling element bearing using discreet 

wavelet packet analysis combined with 

multiple band-pass filtered signal with 

autoregressive  (AR) spectrum of the 

envelop signal.  Hui-Li, Zhang and 

Zheng
[5]

 presented an novel approach for 

fault diagnosis of rolling element bearing 

based on based on order tracking, 

empirical mode decomposition (EMD) and 

Teager Kaiser energy operator (TKEO) 

technique.  Yang et al. 
[6] 

used neural 

network and EMD to extract the energy of 

different frequency bands as features to 

identify roller bearing fault patterns 

accurately and effectively. They showed 

that the combination of EMD and ANN 

provides a better fault diagnosis method 

for normal, inner race and outer race faults 

than the combination of ANN and wavelet 

technique. Dong et al. 
[7] 

presented an 

improved shifting process for EMD 

method resulting in shortened time while 

maintaining the same accuracy. The 

improved EMD process combined with 

Shock Pulse Method (SPM) and 

demodulation was efficient and accurate 

and could be effectively applied roller 

bearing fault diagnosis. Heng and Nor 
[8]

 

studied sound pressure and vibration signal 

of rolling element bearing using various 

statistical parameters like skewness, crest 

factor, kurtosis etc. Rai and Mohanty 
[9]

 

applied EMD process to extract IMFs and 

then carried out FFT analysis of IMFs to 

identify the characteristic bearing defect 

frequencies. Taylor 
[10]

 identified defects 

in antifriction bearings from analyses of 

the low frequencies (up to 2,000 Hz) 

generated by the moving parts in the 

bearing by using spectral method. Jena and 

Panigrahi 
[11]

 applied Continuous Wavelet 

Transform (CWT) to study various fault 

features of rolling element bearing. Kankar 

et al. 
[12]

 studied rolling element bearing 

fault diagnosis using wavelet transform. 

Seven different base wavelets were 

considered for the study and Complex 

Morlet wavelet was selected as it had 

minimum Shannon Entropy for extracting 

statistical features. Then three different 

classification algorithms namely Support 

Vector Machine (SVM), Learning Vector 

Quantization (LVQ) and Self-Organizing 

Map (SOM) were used for bearing fault 

classification. Kankar et al. 
[13] 

also studied 

fault features of rolling bearing using 

cyclic autocorrelation of raw vibration 

signals.  

 

Three learning techniques were used for 

faults classifications: Support vector 

machine, Artificial Neural Network and 

Self-Organizing Maps. They showed that 

SVM gave better and accurate 

classification performance. Liu et al. 
[14]

 

applied correlation matching as feature 

extraction algorithm for automatic bearing 

fault diagnosis.  Lou and Laparo 
[15]

 used 

wavelet analysis combined with adaptive 

neural-fuzzy inference system (ANFIS) for 

diagnosing localized defects in rolling 

element bearing. Mcfadden and Toozhy
[16]

 

used high frequency resonance technique 

(HFRT) with synchronous averaging for 

studying rolling element bearings with 

spalling damage. Wang et al. 
[17]

 used 

Autoregressive (AR)/Autoregressive 

Conditional Heteroscedasticity (ARCH) 

model coefficients from the bearing 

vibration signal for extracting the feature 

vectors.  

 

Then they used K-means based clustering 

method for automatic classification of 

bearing fault status. Zhang et al. 
[18]

 

presented a bearing fault diagnosis method 

based on multi-scale entropy (MSE) as the 

vibration signal is nonlinear characteristics 

and then used adaptive neuro-fuzzy 

inference system (ANFIS) for fault 

classification. The proposed approach was 

not only very reliable and efficient in fault 

classification, but identifies the level of 

fault severity accurately. Purushotham et 
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al. 
[19]

 presented a bearing fault diagnosis 

system using discreet wavelet analysis 

(DWT) and Hidden Markov Model 

(HMM).  

 

Swahili et al. 
[20]

 used Spectral Kurtosis 

(SK) method for bearing diagnostics. 

Further, AR-based linear prediction filter 

combined with Minimum Entropy 

Deconvolution (MED) was used for 

bearing signal enhancement.  

 

In the present analysis bearings with 

healthy condition (HB) and with inner race 

(IR), outer race (OR) and ball fault (BF) 

are taken up for experimental simulation. 

The acceleration vibration signal from the 

bearing is acquired through a DAQ 

system. 

 

The vibration signal is decomposed into 

IMFs by the EMD process. A brief 

description of the EMD process is given in 

section 2.  

 

The fault features from the IMFs are 

extracted from three entropy definitions: 

Shannon entropy, approximate entropy and 

spectral entropy. Section 3 provides a brief 

description of these entropies. Two soft 

computing techniques, ANN and SVM are 

employed for diagnosis of bearing faults 

using the extracted features. 

 

EMPIRICAL MODE 

DECOMPOSITION 

Empirical Mode Decomposition (EMD) is 

a time domain signal processing method in 

which the signal is decomposed into a 

number of simpler signals called Intrinsic 

Mode Functions (IMF).  

 

The IMF signals have the following 

properties: (a) only one extreme between 

zero crossings and (b) a mean value of 

zero. The process is useful for analyzing 

non-linear and non-stationary signals. The 

process was proposed by Huang et al. 
[21-

22]
. 

The procedure of extracting an IMF is 

called sifting. The sifting procedure is as 

follows: 

1. For a signal ( )X t , let 1m
  be the mean 

of its upper and lower envelopes as 

determined from a cubic-spline 

interpolation of local maxima and 

minima.  

2. The first component 1h  is computed 

as:  

      1 1( )h X t m 
.                                                (1) 

3. In the second sifting process, 1h  is 

treated as the data, and 11m
 is the mean 

of h1’s upper and lower envelopes, 

thus:  

      11 1 11h h m 
.                             (2) 

4. This sifting procedure is repeated k 

times, until h1k is an IMF, that is: 

      1( -1) 1 1-k k kh m h
.                                               (3) 

5. Then it is designated as 1 1kc h
, the 

first IMF component from the signal, 

which contains the shortest period 

component of the signal. It is separated 

from the rest of the data by subtracting 

from the original data:  

      1 1( )X t c r 
.                              (4) 

Since the residue, 1r , still contains longer 

period variations in the data, it is treated as 

the new data and subjected to the same 

sifting process as described above. The 

procedure is repeated on successive rj’s as 

follows:  

     1 2 2 1, ....  n n nr c r r c r   
.     (5) 

6. The sifting process stops finally when 

the residue, rn, becomes a monotonic 

function from which no more IMF can 

be extracted. From the above 

equations, we can reconstruct the 

original signal as such, 

     1

( )
n

j n
j

X t c r


 
.                               (6) 
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Thus following the above shifting 

procedure a number of IMFs and a residue, 

rn can be obtained. 

 

3. Feature Extraction: 

Feature extraction is one of the most 

important steps for classification 

algorithm.  

 

Following the above discussion a number 

of IMF signals can be obtained from the 

vibration signal. From each IMF a number 

of statistical features can be derived. In the 

present work the following statistical 

features are extracted to detect incipient 

bearing damage: 

 

3.1 Shannon Entropy: 

Shannon entropy is an important statistical 

property of a signal which gives the 

information content of the signal. The 

entropy can explicitly be written as,  

2
1

( )log ( )
N

i i
i

E p X p X



                      (7) 

Where
 1 2, ,..., nX X X X

is a random 

phenomenon and
( )ip X

is the probability 

of iX
.  

 

3.2 Approximate Entropy: 

Approximate entropy (ApEn) is a measurement technique for regularity statistic and 

unpredictability of fluctuations over a time-series data. The complexity measure was 

developed by Pincus 
[23]

. For an N sample raw time series data equi-spaced in time, 

 ( ):1u i i N 
, a sequence of vector (1), (2),..., ( 1)N m X X X in 

m can be formed as 

follows: 

 ( ), ( 1),..., ( 1) , 1,..., 1m
i ui ui u i m i N m      X

                 (8) 

Where, m is an integer giving the length of the compared window.  

The above sequence (1), (2),..., ( 1)N m X X X  is used to construct for each i,

1 1i N m     
( ) number of ( ) such that [ ( ), ( )] )/( 1)m

iC r X j d X i X j r N m   
                (9) 

in which [ ( ), ( )]d X i X j  is defined as  

 
1,2,...

[ ( ), ( )] max ( 1) ( 1)
k m

d X i X j u i k u j k


     
.                 (10) 

Further, let us define

1
1

1

( ) ( 1) log ( )
N m

m m
i

i

r N m C r
 





    
.                (11) 

 

In the above definition r defines the level 

of filtering. Finally, the approximate 

entropy is given as,   
1( , ) ( ) ( )m mApEn mr r r  .            (12) 

 

A low value of ApEn indicates that the 

data is regular and predictable. 

 

SPECTRAL ENTROPY 

Entropy is a measures the impulsiveness of 

a signal or a probability mass function 

(PMF). Thus, a PMF with sharp peak will 

have low entropy while a PMF with flat 

distribution will have high entropy. The 

PMF of a signal spectrum is given by,  

1

i
i N

ii

X
x

X



 For i =1 to N.                (13) 

 

Where, iX
 is the energy of i

th
 frequency 

component of the spectrum obtained from 

the power spectral density of an IMF 

signal; thus, 
 1 2, ,..., Nx x xx

is the PMF 

of the spectrum and N is the number of 
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points in the spectrum. Finally, the spectral 

entropy from the vector x is calculated as  

2
1

log
N

i i
i

E x x



                           (14) 

For classification, different sets of feature 

vectors are obtained from IMFs and their 

statistical measures as defined above.  

 

CLASSIFICATION ALGORITHM 

Classification in machine learning is the 

process of grouping a new set of 

observation data, based on training data set 

whose category membership is known. In 

machine learning, classification is of two 

types: supervised learning, where training 

set of correctly identified observations is 

available a-priori and unsupervised 

learning or cluster analysis, where 

grouping of data is based on some inherent 

statistical measures. In the present 

analysis, two Support Vector Machine 

(SVM) and Artificial Neural Network 

(ANN), which are supervised learning 

methods, are adopted for rolling element 

bearing fault diagnosis. The mechanism of 

SVM and ANN are widely available in 

literature, so they are not reproduced here. 

The Radial Basis Function (RBF) is used 

in the present analysis as the kernel 

function for SVM with 10-fold cross 

validation. For training a maximum 

iteration number of 1000 and mean square 

error (MSE) of 0.001 are used. Similarly, 

the ANN classification is based on 

Levenberg-Marquardt backpropagation 

algorithm. For training, a target mean 

square error (MSE) of 1e-10, a minimum 

gradient of 1e-15 and maximum iteration 

number (epoch) of 500 are used.  

 

EXPERIMENTAL SET-UP 

In the present work Machinery Fault 

Simulator (MFS) test rig from 

SpectraQuest Inc. is used for vibration 

analysis of the healthy and faulty rolling 

element bearing. The rotor-bearing system 

is connected with a Variable Frequency 

Drive (VFD) motor. The rotor-shaft 

system is supported on two rolling element 

bearings. ER12K series of standard duty 

bearings from Rexnord are used in the 

experiment. Four types of bearing fault 

conditions are introduced in the 

bearing:inner race fault (IR), outer race 

fault (OR), ball fault (BF) and healthy 

bearing (HB).The faulty bearings are 

mounted on non-drive end of the rotor-

bearing system as shown in the figure. The 

test NI Compact DAQ hardware system is 

used for data acquisition. NI LabVIEW 

developer suit is used for vibration data 

acquisition, storage and analysis.  

 

Piezo-electric accelerometers (IMI 

608A11) are used for picking up the 

vibration signals from bearing housing. 

Sensitivity of these accelerometers is 100 

     and the measurement range is ± 

50g. Optical tachometer is used for 

measuring rotor speed. A schematic 

diagram of the test rig is shown in the 

figure below.  

 

 
Fig. 1: Schematic diagram of the test rig 
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The parameters of the experimental system 

are as follows: 

 

Table 1: Rotor-Bearing Parameters 
Length of shaft 660 mm 

Diameter of shaft 19.05mm 

Mass of Disk 653 gm 

Shaft speed 20, 30, 40 Hz 

No of balls 8 

Ball Diameter 7.937 mm 

Inner race radius 9.525mm 

Outer race radius 20.707mm 

Bearing Clearance 
13 

m
 

 

METHODOLOGY 

In the present work healthy as well as 

faulty rolling element bearings are 

mounted on the test rig which is run by a 

VFD motor. The rotor is run at a particular 

frequency. Acceleration signal from the 

bearing housing is acquired with a 

sampling frequency of 5120Hz for a 

period of 4 seconds. Therefore, there are 

20480 data points in the entire signal 

length. The acceleration signal is then 

partitioned into 20 sections, each 

consisting of 1024 data points. Two sets of 

data are collected, thus giving total 40 

sections.  Empirical mode decomposition 

(EMD) is then applied on each sectioned 

signal to obtain their IMFs. Only first 

seven IMFs are considered for feature 

extraction in the present work. Various 

statistical features are then extracted from 

the IMFs as discussed in section 3. The 

above procedure is then repeated for all 

four bearing conditions namely, inner race 

fault (IR), outer race fault (OR), ball fault 

(BF) and healthy bearing (HB). Then, the 

size of entire feature matrix for all four 

types of bearing is 160×7.70% of the data 

is used for training and the remaining 30% 

for testing the classification algorithm. 

Vibration signal from the test rig are 

acquired at three rotor speeds: 20Hz, 30Hz 

and 40Hz. Performance analysis of ANN 

and SVM is carried out at all three rotor 

speeds. 

 

RESULT AND DISCUSSION 

The vibration acceleration signal along the 

horizontal and vertical direction are 

acquired through accelerometers under 

healthy and with inner race, outer race and 

ball fault condition. The vertical vibration 

responses under these conditions are 

shown in Fig. 2. Empirical mode 

decomposition (EMD) is carried out on the 

raw signal to extract a number of IMFs. As 

a sample example, first four IMFs of the 

vibration response under ball fault 

condition are shown in Fig. 3.  

 

 
Fig. 2: Acceleration signal from bearing housing under healthy and faulty conditions 
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Fig. 3: First four IMFs of vertical vibration signal under ball fault 

 

 
Fig. 4: Shannon Entropy vs. IMF no. 

 

Feature vectors for training and testing the 

ANN and SVM as given in the section 3.0 

are extracted from each IMF. Figure 4 

shows the Shannon entropy vs. IMF 

number for different bearing fault 

condition. It may be deuced from Fig. 4 

that entropy value reduces as the IMF 

number increases. Thus, higher IMFs 

contain lesser information.  

 

In the present analysis, multi-class pattern 

recognition of bearing faults is carried out 

by Artificial Neural Network (ANN) and 

Support Vector Machine (SVM) using the 

features as described above. The 

performances of ANN in terms of 

classification accuracy and number of 

epochs (iterations) for different statistical 

features are listed in Table 2.  

 

It may be seen from Table 2 that for ANN 

very good training and testing 

classification accuracy is obtained when 

Shannon entropy and approximate entropy 

are used as classification feature for all 

three speeds. Classification accuracies for 

Shannon entropy are 97.5%, 86.9% and 

93.8% when the rotor speeds are 20Hz, 

30Hz and 40Hz respectively. When 

approximate entropy is used as the feature 

vector the classification accuracies are 

96.9%, 85.6% and 96.3% respectively. 
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However, spectral entropy as feature 

vector gives slightly less classification 

accuracies which are 86.3%, 73.3% and 

91.3% respectively. The epoch at which 

the neural network converges are also 

given in the Table 2.  

 

Similarly performance of SVM for the 

above mentioned features given in Table 3. 

Classification accuracy for the three rotor 

speeds of 20Hz, 30Hz and 40Hz are 

93.8%, 86.9% and 94.4% respectively 

when Shannon entropy is used as feature 

vector, while for approximate entropy the 

accuracies are 96.3%, 89.4% and 90.6% 

respectively. Here, also slightly lesser 

classification performance is observed 

when spectral entropy is used as feature 

vector. The classification performance in 

terms of percentage accuracy for rotor 

speed of 20Hz, 30Hz and 40Hz are 86.1, 

87.5 and 91.3 respectively for spectral 

entropy. The number of support vectors 

(SV) obtained after the optimization is also 

given for each case in Table 3.  

 

Table2: Classification Accuracy of ANN at different speeds 
Feature Shannon entropy Approx. entropy Spectral entropy 

Rotor Speed Accuracy (%) Epoch Accuracy (%) Epoch Accuracy (%) Epoch 

20Hz 97.5 21 96.9 32 86.3 33 

30Hz 86.9 41 85.6 112 73.3 42 

40Hz 93.8 32 96.3 40 91.3 25 

 

Table 3: Classification Accuracy of SVM at different speeds 
Feature Shannon entropy Approx. entropy Spectral entropy 

Rotor Speed Accuracy (%) No. SV Accuracy (%) No. SV Accuracy (%) No. SV 

20Hz 93.8 88 96.3 49 86.3 103 

30Hz 86.9 75 89.4 69 87.5 95 

40Hz 94.4 64 90.6 74 91.3 70 

 

Confusion matrices obtained by using IMF 

entropy feature for different fault 

conditions are shown in Table 4 and 5for 

SVM and ANN respectively when the 

rotor speed is 20Hz. Total 160 numbers of 

instances of bearing fault are obtained in 

which BF, HB, IR and OR consist of 40 

cases each. It may be inferred from Table 

5 that SVM correctly predicted 36, 40, 40 

and 34 instances of BF, HB, IR and OR 

respectively, while ANN has correctly 

predicted 40, 40, 38, 38 instances 

respectively. The number of false 

predictions can be also observed from 

Table 4 and 5.  

 

Table 4: Confusion Matrix for SVM with 

Shannon entropy at 20Hz 
Predicted Class BF HB IR 

 

OR 

Observed Class 

BF 36 3 0 1 

HB 0 40 0 0 

IR 0 0 40 0 

OR 6 0 0 34 

Table 5: Confusion Matrix for ANN with 

Shannon entropy at 20Hz 
Predicted Class 

BF HB 
IR 

 
OR 

Observed Class 

BF 40 0 0 0 

HB 0 40 0 0 

IR 0 0 38 2 

OR 0 0 2 38 

 

The confusion matrices for approximate 

entropy as classification feature for SVM 

and ANN are also given in Table 6 and 7 

respectively for rotor speed of 20Hz.  

 

It may be observed from Table 6 that the 

SVM correctly predicts 37, 40, 40, and 37 

cases of BF, HB, IR and OR respectively 

out of 40 cases each. Similarly, ANN 

correctly predicts 40, 40, 37 and 38 

instances of above fault conditions 

respectively.  
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Table 6: Confusion Matrix for SVM with 

ApEnat 20Hz 
Predicted Class BF HB IR 

 

OR 

Observed Class 

BF 37 0 0 3 

HB 0 40 0 0 

IR 0 0 40 0 

OR 3 0 0 37 

 

Table 7: Confusion Matrix for ANN with 

ApEn at 20Hz 
Predicted Class BF HB IR 

 

OR 

Observed Class 

BF 40 0 0 0 

HB 0 40 0 0 

IR 0 0 37 3 

OR 0 0 2 38 

 

CONCLUSION 

The present work deals with fault 

diagnosis of rolling element bearing based 

on SVM and ANN. EMD method is 

applied to extract the so-called Intrinsic 

Mode Function (IMF) from acceleration 

signal under faulty and healthy condition. 

In the work two new fault features are 

proposed based on complexity measure of 

the system signal- approximate entropy 

and spectral entropy. Shannon entropy as a 

measure of information contain is also 

extracted. Shannon entropy and 

approximate entropy features from the 

IMF signals are shown to be very efficient 

and accurate for bearing fault diagnosis.  
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