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ABSTRACT 

This work investigates the parametric optimization of CNC turning operation for Nylon 6 

with principal component analysis (PCA) and technique for order preference by similarity to 

ideal solution (TOPSIS) based on Taguchi approach. Taguchi’s L16 orthogonal array takes 

16 experimental runs to execute the design matrix of turning parameters through PCA 

coupled with TOPSIS, utilizing relevant experimental data as obtained through 

experimentation. Turning speed (TS), feed rate (FD) and depth of cut (DOC) are optimized 

with the consideration of multiple performance characteristics, namely surface roughness Ra 

(µm), Rz (µm), material removal rate (MRR) (cm3/sec), and machining time (MT) (sec). The 

capabilities of the above proposed models have been tested through the analysis of variance. 

Lastly, confirmation tests were executed to sort a comparison between the experimental 

results and predicted values. It is found that FD is the most significant parameter followed by 

TS and DOC. The surface roughness parameters (Ra, Rz) and machining time as smaller the 

better and MRR as larger the better. 
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INTRODUCTION 

CNC machine tools are the best available 

methods to provide greater improvements 

in productivity and increase the quality of 

the turned parts and require less operator 

input in recent time. Turning is one of the 

most usable machining operations in 

industries. It is the commonly used 

machining process because of its 

capability to remove material with easiness 

and quicker with a realistically good 

surface quality. It is used for machine 

materials that have flat, curved or irregular 

surface by feeding the tool against a 

rotating work piece. CNC turning machine 

is a machine tool that cuts metal with 

single-point cutting tool. It is widely used 

in a variety of manufacturing industries, 

where quality is an important factor in the 

production with precision. 

In this study, surface roughness, material 

removal rate (MRR) and machining time 

(MT) can be considered as the most 

important factors for better product 

quality. Manufacturing of goods has two 

most significant problems: process 

modelling and optimization. In recent 

years, various significant advantages have 

been found in turning, and many 

researchers have studied the different 

parameters of the machine surface in CNC 

turning process in the previous few years 

by using different optimization methods. 

Some of the literature studies are given as 

follows. 

 

V. Jaiganesh, S. Manivannan and S. 

Manivannan[1]: optimization of process 

parameters on friction stir welding (FSW) 

of nylon 6 polymer plate. Nowadays, the 
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uses of thermoplastics have been increased 

in many fields due to its various 

properties. Joined thermoplastics find a 

wide application in most of the fields due 

to its mechanical properties, and therefore, 

a suitable method for joining should be 

adapted. Nylon 6 is the material that was 

chosen to be welded and analysed 

accordingly. Nylon 6 is a thermoplastic 

material that has good mechanical 

properties and has many applications in 

automobile and aerospace industries. One 

of the suitable methods of joining the 

polymer is FSW. 

 

Arun Kumar Parida, Ratnakar Das, A. 

K. Sahoo, B. C. Routara[2]: optimization 

of cutting parameters for surface 

roughness in machining of GFRP 

composites with graphite/fly ash filler. In 

the present work, an attempt has been 

made to assess the influencing parameters 

on the machining of GFRP composites. 

Using Taguchi method, an L9 orthogonal 

array has been used for experimentation. 

The experiments were conducted on all 

geared lathe using carbide tool with three 

levels of input parameters such as cutting 

speed, depth of cut (DOC) and feed rate 

(FD). 

 

Bandit Suksawat[3]: development of in-

process surface roughness evaluation 

system for cast nylon 6 turning operation. 

This paper aims to develop in-process 

surface roughness evaluation system for 

cast nylon 6 turning operation. The 

construction of the developed system 

comprises data acquisition system and 

fuzzy logic system. The data acquisition 

system includes a miniature load cell 

inserted in a tool holder, signal conditions 

and a signal interface card in order to 

detect the cutting force signal and transmit 

signal to the data analysis module 

constructed by Lab VIEW program. The 

Mamdani-type fuzzy inference system was 

utilized and 20 fuzzy rules were 

determined based on the relationship of 

cutting speed, FD and cutting force for 

prediction, both of surface roughness value 

(Rz) and symbolic representation. 

 

EXPERIMENTAL DETAILS 

Material and Processes 

The material used in this turning process is 

Nylon 6 which is made up of repeating 

units linked together by amide bonds, and 

they are frequently known as polyamides 

(PA). Nylon was the first synthetic 

thermoplastic polymer which was 

successful. The properties of a nylon 6 

thermoplastic polymer could be 

determined by R and R' groups in the 

monomers of the polymer composites. 

Nylon 6 is a product of condensation 

polymerization. In this reaction, monomers 

combine each other, and a by-product 

called molecules is produced. This by-

product is something like HCl or water. 

Nylon 6,6 has a tighter molecular structure 

than nylon 6 polymer due to the higher 

level of hydrogen bonding and maximum 

alignment between hydrogen chains. The 

chemical bonding of nylon 6 polymer can 

be stated as (C12H22N2O2)n. It clearly 

shows that nylon 6 has 12 carbon atoms, 

22 hydrogen atoms and 2 nitrogen atoms 

along with 2 atoms of oxygen, which are 

bonded together and repeating one over 

other and form a polymer. The physical 

properties of the nylon 6 polymer like 

impact strength, tensile strength, density, 

thermal expansion coefficient, melting and 

boiling points also play an important role 

in CNC turning capabilities. [4-7] 

 

Plan of Experiments 

Taguchi analysis uses a greater design of 

orthogonal arrays, which offers a set of 

balanced design matrix of 

experimentations with less number of 

experimental runs. Taguchi method uses a 

statistical measure of performance called 

signal-to-noise (S/N) ratio. The S/N ratio 

takes both the mean and the variability into 
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account. The S/N ratio is the ratio of the 

mean (signal) to the standard deviation 

(noise). The ratio depends on the quality 

characteristics of the product/process to be 

optimized. The standard S/N ratios 

generally used are as follows: nominal-is-

best (NB), lower-the-better (LB) and 

higher-the-better (HB). The optimal setting 

is the parameter combination, which has 

the highest S/N ratio, because, irrespective 

of the quality criteria (NB, LB, HB), S/N 

ratio should always be maximized. Once 

the experimental data (quality attribute 

value) are normalized using NB/LB/HB 

criteria, the normalized value lies in 

between zero and one. Zero represents the 

worst quality to be rejected and one 

represents the most satisfactory quality. 

Since the S/N ratio is expressed as mean 

(signal) to the noise (deviation from the 

target), maximizing S/N ratio ensures 

minimum deviation and hence it is (S/N 

ratio) to be maximized. Figure 1-2. 

  

 
Fig. 1. Polymer 6 specimens. 

 

The methodology of Taguchi for three 

factors at four levels is used for the 

execution of the plan of experiments in 

this work. The degrees of freedom 

required for the study are three and 

Taguchi’s L16 orthogonal array is used to 

define the 16 trial conditions. In the 

present experimental study, turning speed 

(TS), FD and DOC have been considered 

as process variables. Surface roughness 

(Ra, Rz) (µm), MRR (cm3/sec) and MT 

(sec) have been taken as response 

variables. Only main effects of parameters 

are taken into account and factor 

interactions are not studied. The process 

parameters and their levels are listed in 

Table 1. Each of the 16 trials is replicated 

twice, and the average response values are 

used for the optimum results. Table 2 

shows the experimental design matrix and 

the corresponding average values of each 

parameter. [8-9] 

 

Table 1. Process parameters and their levels. 
Symbol Parameters Units Level 1 Level 2 Level 3 Level 4 

TS Turning speed RPM 1200 1400 1600 1800 

FD Feed rate mm/rev 0.030 0.050 0.070 0.090 

DOC Depth of cut mm 0.20 0.40 0.60 0.80 
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Table 2. Experimental design matrix with their results. 
Run 

no. 

Turning speed 

(TS) 

Feed rate 

(FD) 

Depth of cut 

(DOC) 

Ra 

(µm) 

Rz 

(µm) 

Material removal rate 

(cm3/sec) 

Machining time 

(sec) 

1. 1200 0.030 0.20 4.43 31.04 0.832 23.00 

2. 1200 0.050 0.40 2.05 18.42 0.392 51.00 

3. 1200 0.070 0.60 2.60 28.30 0.342 56.00 

4. 1200 0.090 0.80 3.00 16.75 0.503 38.00 

5. 1400 0.030 0.40 3.30 28.76 1.275 15.00 

6. 1400 0.050 0.20 0.26 5.60 1.196 16.00 

7. 1400 0.070 0.80 1.59 16.71 0.380 48.00 

8. 1400 0.090 0.60 2.37 18.01 0.468 39.00 

9. 1600 0.030 0.60 3.40 23.60 1.429 14.00 

10. 1600 0.050 0.80 3.59 23.67 0.315 58.00 

11. 1600 0.070 0.20 5.23 38.14 0.425 43.00 

12. 1600 0.090 0.40 1.36 16.85 0.547 35.00 

13. 1800 0.030 0.80 1.99 12.40 1.366 14.00 

14. 1800 0.050 0.60 2.18 20.12 0.351 52.00 

15. 1800 0.070 0.40 1.40 4.57 0.491 39.00 

16. 1800 0.090 0.20 1.67 13.91 0.617 31.00 

 

DETERMINATION OF OPTIMAL 

MACHINING PARAMETERS 

Principal Component Analysis 

Joint methodology is used for the effective 

optimization of turning parameters over 

different performance characteristics. This 

methodology is the combination of 

principle component analysis (PCA), 

technique for order preference by 

similarity to ideal solutions (TOPSIS) and 

Taguchi philosophy. [10-12] 

 

PCA is a tool to find designs in correlated 

data and declaring the data in such a 

manner so as to point out their matches 

and differences. The main advantage of 

PCA is that once the patterns in data have 

been identified, the data can be 

compressed, i.e. by reducing the number of 

dimensions, without much loss of 

information. The steps involved in PCA 

are discussed below: 

Step 1: Data is normalized using the 

following equation: 

For HB entity,  

   
(1)

 
 

For LB entity, 

                 
(2)

 
 

where xi(j) and ) are the normalized 

and experimental values, respectively, for 

the ith experiment using the jth response. 

 and  are the 

smallest and largest values of ) in the 

jth response, respectively. 

 

Table 3 shows the normalized values of 

responses with respect to their S/N ratio 

values. This table clearly shows that a 

higher S/N ratio is desirable. In case of 

MRR, experiment no. 9 is having higher 

S/N ratio value, so it is having value 1. 

Likewise, Ra, Rz and MT are having values 

of higher S/N ratio at experiment nos. 11 

and 10, respectively, so these are having 

value 1. 
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Table 3. S/N ratio with their normalized values of each performance parameters. 
Sl. No. S/N ratios Normalized values 

 Ra Rz MRR MT Ra Rz MRR MT 

1 -12.9281 -29.8384 -1.5975 -27.2346 0.9447 0.9029 0.6423 0.3493 

2 -6.2351 -25.3058 -8.1343 -34.1514 0.6880 0.6570 0.1446 0.9095 

3 -8.2995 -29.0357 -9.3195 -34.9638 0.7672 0.8594 0.0543 0.9753 

4 -9.5424 -24.4803 -5.9686 -31.5957 0.8148 0.6122 0.3095 0.7025 

5 -10.3703 -29.1758 2.1102 -23.5218 0.8466 0.8670 0.9246 0.0486 

6 11.7005 -14.9638 1.5546 -24.0824 0.0000 0.0958 0.8823 0.0940 

7 -4.0279 -24.4595 -8.4043 -33.6248 0.6033 0.6110 0.1214 0.8669 

8 -7.4950 -25.1103 -6.5951 -31.8213 0.7363 0.6464 0.2618 0.7208 

9 -10.6296 -27.4582 3.1006 -22.9226 0.8565 0.7738 1.0000 0.0000 

10 -11.1019 -27.4840 -10.0338 -35.2686 0.8746 0.7752 0.0000 1.0000 

11 -14.3700 -31.6276 -7.4322 -32.6694 1.0000 1.0000 0.1981 0.7895 

12 -2.6708 -24.5320 -5.2403 -30.8814 0.5512 0.6150 0.3650 0.6447 

13 -5.9771 -21.8684 2.7090 -22.9226 0.6781 0.4706 0.9702 0.0008 

14 -6.7691 -26.0726 -9.0939 -34.3201 0.7084 0.6986 0.0716 0.9232 

15 -2.9226 -13.1983 -6.1784 -31.8213 0.5609 0.0000 0.2935 0.7208 

16 -4.4543 -22.8665 -4.1943 -29.8272 0.6197 0.5246 0.4446 0.5593 

 

Step 2: Normalized data are used to find 

out a covariance matrix as 

A =  

where m is the number of experiments, n is 

the number of quality characteristics and x 

is the coefficient of quality characteristics. 

In this problem, m = 16, n = 4. 

 

Step 3: Compute correlation coefficient 

array: 

            (3) 

 

Step 4: The eigen values and eigen vectors 

are calculated from correlation coefficient 

array: 

              (4) 

 

where  is the eigen value and is the 

eigen vector corresponding to respective 

eigen values. 

Table 4 shows the eigen values and eigen 

vectors which are calculated by Equations 

(3) and (4). 

 

Step 5: Compute principal component: 

               (5) 

where  is the first principal 

component,  is the second principal 

component and so on. 

 

Step 6: Estimate the quality loss for each 

variable:  

Loss estimate is defined as the absolute 

values of the difference between the ith 

experimental value for the kth response 

and the desired (ideal) value. [13-18] 

 

Table 4. PCA results: Eigen values, eigen 

vectors, AP, CAP. 
 PC1 PC2 PC3 PC4 

Eigen value 2.2896 1.5195 0.1896 0.0013 

Eigen vectors 0.442 -0.548 0.710 -0.005 

 0.426 -0.568 -0.704 0.007 

 -0.559 0.433 0.019 0.707 

 0.558 0.435 -0.007 0.707 

AP 0.572 0.380 0.047 0.000 

CAP 0.572 0.952 1.000 1.000 
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Table 5. Major principal components with quality loss estimates. 
Sl. No. Major principal components Computed quality loss elements 

 VPC1 VPC2 VPC3 VPC4 VPC1 VPC2 VPC3 VPC4 

Ideal solution 0.867 -0.248 0.018 1.416     

1 0.63806 -0.600481 0.044854 0.702658 0.2289 0.3525 -0.0269 0.7133 

2 1.01065 -0.291956 0.022333 0.746408 -0.1437 0.0440 -0.0004 0.6696 

3 1.21907 -0.460797 -0.066101 0.730107 -0.3521 0.2128 0.0841 0.6859 

4 0.83992 -0.354639 0.148482 0.715695 0.0271 0.1066 -0.1305 0.7003 

5 0.25381 -0.534900 0.007945 0.689888 0.6132 0.2869 0.0101 0.7261 

6 -0.39994 0.368511 -0.051337 0.690915 1.2670 -0.6165 0.0693 0.7251 

7 0.94281 -0.247989 -0.005563 0.699989 -0.0759 -0.0001 -0.0236 0.7160 

8 0.85667 -0.343740 0.067636 0.695541 0.0103 0.0957 -0.0496 0.7205 

9 0.14921 -0.475880 0.082360 0.708134 0.7178 0.2279 -0.0644 0.7079 

10 1.27481 -0.484594 0.068225 0.708053 -0.4078 0.2367 -0.0502 0.7079 

11 1.19780 -0.686790 0.004237 0.700233 -0.3308 0.4389 0.0138 0.7158 

12 0.66133 -0.212888 -0.039186 0.715407 0.2057 -0.0351 0.0572 0.7006 

13 -0.04170 -0.218455 0.168577 0.686401 0.9087 -0.0295 -0.1506 0.7296 

14 1.08584 -0.352413 0.006048 0.704672 -0.2188 0.1044 0.0120 0.7113 

15 0.48606 0.133260 0.398770 0.714306 0.3809 -0.3813 -0.3808 0.7017 

16 0.56095 -0.201761 0.075201 0.710331 0.3061 -0.0462 -0.0572 0.7057 

 

Table 5 shows the major principal 

components with quality loss estimates 

calculated by Equation (5).  

 

Technique for Order Preference by 

Similarity to Ideal Solution  

The Concept of this method is that selected 

alternatives would have the shortest 

distance from the positive best solution 

and the extreme distance from negative 

ideal solution [19-20]. The solution that 

maximizes the benefit conditions and 

minimizes adverse criteria is known as 

positive ideal solution, whereas the 

solution that maximizes the adverse 

conditions and minimizes the benefit 

conditions is known as negative ideal 

solution. The steps included in TOPSIS 

methodology is described as follows:  

Step 1: The matrix format is developed in 

this step.  

The alternatives are represented by the row 

of this matrix and attributes are allocated 

to each column of the matrix. The 

decision-making matrix can described as 

            A1[x11 x12 …. xij …. x1j] 

D =       A2[x21 x22 …. x2j …. x2n] 

          Ai[xi1 x12 …. xij …. xin] 

              [                               ] 

             Am[xm1 xm2 …. xmj …. xmn] 

 

Here A(i 1, 2, …, m) represents the 

possible alternatives X(j 1, 2, …, n) 

represents the attributes relating to 

alternative performance, j 1, 2, …, n and xij 

is the performance of Ai with respect to 

attribute Xj. 

 

Step 2: Normalization of decision matrix is 

performed in this step. Formula used is as 

follows: 

                     
(6)

 

 

Here rij represents the normalized 

performance of Ai with respect to attribute 

Xj. 

 

Step 3: Development of weighted 

normalized decision matrix: 

V = [Vij] 

 

It can be found as 

V = wjrij                         (7) 
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Table 6. Normalized and weighted normalized values of quality loss estimates. 
Sl. No. Normalized values of quality loss estimates Weighted normalized values of quality loss estimates 

 VPC1 VPC2 VPC3 VPC4 VPC1 VPC2 VPC3 VPC4 

1 0.1126 0.3338 -0.0582 0.2516 0.0563 0.1669 -0.0291 0.1258 

2 -0.0707 0.0417 -0.0008 0.2362 -0.0354 0.0209 -0.0004 0.1181 

3 -0.1732 0.2015 -0.1818 0.2419 -0.0867 0.1008 -0.0909 0.1210 

4 0.0133 0.1009 -0.2821 0.2470 0.0006 0.0506 -0.1411 0.1235 

5 0.3017 0.2716 0.0218 0.2561 0.1509 0.1358 0.0109 0.1281 

6 0.6234 -0.5837 0.1498 0.2558 0.3117 -0.2919 0.0749 0.1279 

7 -0.0373 -0.0009 -0.0510 0.2526 -0.0187 -0.0004 -0.0255 0.1263 

8 0.0005 0.0906 -0.1072 0.2541 0.0002 0.0453 -0.0536 0.1271 

9 0.3532 0.2158 -0.1392 0.2497 0.1766 0.1079 -0.0696 0.1249 

10 -0.2007 0.2241 -0.1085 0.2497 -0.1004 0.1121 -0.0543 0.1249 

11 -0.1628 0.4156 0.0298 0.2525 -0.0814 0.2078 0.0149 0.1263 

12 0.1012 -0.0332 0.1237 0.2471 0.0506 -0.0166 0.0619 0.1236 

13 0.4471 -0.0279 -0.3256 0.2574 0.2236 -0.0140 -0.1628 0.1287 

14 -0.1077 0.0988 0.0259 0.2509 -0.0539 0.0494 0.0130 0.1255 

15 0.1874 -0.3610 -0.8232 0.2475 0.0937 -0.1805 -0.4116 0.1238 

16 0.1506 -0.0437 -0.1237 0.2489 0.0753 -0.0219 -0.0619 0.1245 

 

Table 6 shows the normalized and weighted 

normalized values of quality loss estimates 

calculated by Equations (6) and (7).  

 

Step 4: Identified positive ideal (best) and 

negative ideal (worst) solution: 

Positive ideal solution can be expressed as 

A+ = {(max Vij, jcJ) (min Vij, jcJ)} 

     = {V1
+, V2

+, …, Vj
+, …, Vn

+}             (8) 

Negative ideal solution can be expressed 

as 

A− = {(min Vij, jcJ) (max Vij, jcJ)} 

         = {V1
-, V2

-, …, Vj
- , …., Vn

-}          (9) 

Here J = {J = 1, 2, …, n} 

 

Table 7. Positive ideal and negative ideal 

solutions. 
Sl. No. Positive ideal Negative ideal 

1 -0.1004 0.3117 

2 -0.2919 0.2078 

3 -0.4116 0.0749 

4 0.1181 0.1287 

 

Step 5: Determination of distance 

measures: 

Si
+=     

(10)
 

Si
-=      

(11)
 

Step 6: Identify relative closeness to the 

Ideal solution: 

             (12) 

Step 7: Ranking of performance order. The 

best choice can be obtained with 

alternative of the largest relative 

coefficient. 

 

RESULTS AND DISCUSSION  

This segment of the paper presents the 

results and discussion of experiments and 

turning operation which have done on the 

nylon 6 material specimen. Numerical 

techniques are commonly used to improve 

the quality of a product or process. Such 

techniques enable the operator to explain 

and study the effect of every single 

condition possible in an experiment, where 

several aspects are involved. In the present 

work, a statistical technique called 

Taguchi method and analysis of variance 

(ANOVA) are used to optimize the 

process parameters of the present 

investigation. Table 7- 8. 
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Table 8. Computed values of equation 

measures. 
Sl. No. S+ S- 

1 0.4381 0.2788 

2 0.5207 0.4015 

3 0.5072 0.4447 

4 0.4480 0.3795 

5 0.6517 0.1874 

6 0.6377 0.4997 

7 0.4907 0.4032 

8 0.5892 0.3741 

9 0.5946 0.2216 

10 0.5394 0.4424 

11 0.6573 0.3977 

12 0.5682 0.3446 

13 0.4942 0.3368 

14 0.5468 0.4032 

15 0.2239 0.6588 

16 0.4755 0.3569 

 

Table 9. Closeness coefficient with their 

ranking. 
Sl. No. Ci

+ S/N ratio RANK 

1 0.3889 -8.2032 11 

2 0.4354 -7.2222 7 

3 0.4672 -6.6099 2 

4 0.4586 -6.7713 3 

5 0.2233 -13.0222 16 

6 0.4393 -7.1448 6 

7 0.4511 -6.9145 4 

8 0.3884 -8.2144 12 

9 0.2715 -11.3246 15 

10 0.4506 -6.9242 5 

11 0.3770 -8.4732 14 

12 0.3775 -8.4617 13 

13 0.4053 -7.8445 10 

14 0.4244 -7.4445 9 

15 0.7463 -2.5417 1 

16 0.4288 -7.3549 8 

 

 
Fig. 2. Specimens of each experiments. 

 

In this work, various tables are calculated 

with the help of the proposed 

methodology, and finally, the result comes 

in the form of closeness coefficient. The 

optimum conditions represent the 

combination of control factor levels that 

are expected to produce the best results. 

Observed values are recorded for 

experimental run, and finally, the 

closeness coefficient is calculated as 

shown in Table 9. From the table, it is 

clear that the higher closeness coefficient 

(0.7463) is assigned with rank 1. The 

graph plotted on the basis of S/N ratio 

values of closeness coefficient, the 

optimum parametric combination setting 

for Ra, Rz, MRR and MT is obtained. All 

the experimental runs are associated to 

larger-the-better characteristic. Plot for 

process parameter values versus closeness 

coefficient values is shown in Figure 3.



 

 

 

 

IJMMP (2018) 36–47 © JournalsPub 2018. All Rights Reserved                                                                Page 44 

International Journal of Manufacturing and Materials Processing 
Vol. 4: Issue 1 

www.journalspub.com 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Process parameters versus closeness coefficient (Ci
+). 

 

Figure 3 shows the effect of each control 

factor with response graph. This figure 

helps to investigate the ideal turning 

parameters (the level with the highest point 

on the graphs) as well as to find out the 

influence of each parameter on Ci
+ mean 

value (the general slope of the line). The 

line in the figure, which connects between 

the levels, can clearly show the powerful 

impact of each control factor. The main 

effect plots are used to conclude the 

optimal conditions to obtain the optimum 

value of output. The graph clearly exposes 

optimal machining setting for optimal 

results as (TS = 1800 rpm, FR = 0.07 

mm/rev and DOC = 0.40 mm).  

 

Table 10. Mean response closeness 

coefficient (Ci
+). 

Level TS FD DOC 

1 0.4375 0.4374 0.4456 

2 0.3755 0.5104 0.3879 

3 0.3691 0.4133 0.4414 

4 0.5012 0.3223 0.4085 

Delta 0.1321 0.1881 0.0578 

Rank 2 1 3 

 

In addition, the mean values of closeness 

coefficients for each level of machining 

parameters, and the total mean of Ci
+ are 

illustrated in Table 10. The larger value of 

Ci
+ means comparability sequence has a 

strong correlation to the reference 

sequence. Bold values indicate the larger-

the-better characteristics at each level of 

all the factors. 
 
Analysis of Variance 

Most suitable method of identifying the 
significant parameters that affects the 
performance characteristics is the 
ANOVA. This is accomplished by 
separating the total variability of the 
closeness coefficients. The statistical 
insinuation of parameters is estimated by 
its percentage contribution in ANOVA 
table. The term sum of square in ANOVA 
table is used to determine the square of 
deviation from the grand mean. F-ratio is 
used to check the acceptability of the 
model in which the calculated value of F 
should be greater than the F-table value. 
The model is adequate at 95% confidence 
level, since the F calculated value is 
greater than the F-table value. When the 
value of P from the ANOVA table is less 
than or equal to 0.05 (or 95% confidence), 
the obtained models are considered to be 
statistically significant. 
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Table 11. Analysis of variance (ANOVA) for Ci
+. 

Source DF Adj. SS Adj. MS F-value Contribution Rank 

TS 3 0.045846 0.015282 1.76 25.56% 2 

FD 3 0.072290 0.024097 2.77 40.30% 1 

DOC 3 0.009104 0.003035 0.35 5.08% 3 

Error 6 0.052129 0.008688  29.06%  

Total 15    100.00%  

 
Table 11 clearly shows the ANOVA) for 
closeness coefficient (Ci

+) values. From 
the table, it is observed that FD is the most 
influential parameter as shown in the 
ANOVA table, with the percentage 
contribution of 40.30%, while the changes 
in the range of TS are moderate with the 
percentage contribution 25.56%, and DOC 
has very little effect on performance 
characteristics with the percentage 
contribution of 5.08%. 
 

Confirmation Test  

Once the optimal level of machining 

parameters is identified, the last step is to 

predict and verify the improvement of the 

performance characteristics using the 

optimal setting of machine parameters. 

The estimated or predicted value using the 

optimal parameter setting can be 

calculated as follows: 

To identify that the applied optimization 

method is effective for quality 

improvement, the initial machining 

conditions are assumed as TS = 1800 rpm, 

FR = 0.07 mm/rev and DOC = 0.40 mm. 

At this initial machine setting, the 

experimental values of surface roughness 

(Ra) and (Rz), MRR and MT are 1.40 µm, 

4.57 µm, 0.491 cm3/sec and 39.00 sec, 

respectively. The result of confirmation 

test using the optimal machining setting is 

shown in Table 12. 

 

Table 12. Confirmation test result. 
Response Initial machining condition Optimal machining condition 

  Predicted Experimented 

Setting level TS4FD3DOC2 TS4FD3DOC2 TS4FD3DOC2 

Surface roughness (Ra) 1.40 0.907 0.948 

Surface Roughness (Rz) 4.57 7.1925 9.9923 

Material removal rate (MRR) 0.491 1.0337 1.2474 

Machining Time (MT) 39.00 14.25 18.75 

Closeness coefficient (Ci
+) 0.7463 0.6160 0.6487 

                                            Improvement in closeness coefficient (Ci
+) = 0.1303 

 

CONCLUSION 

In this study, optimal combination of 

machining parameters is achieved with the 

optimization of multiple responses such as 

surface roughness (Ra, Rz), MRR and MT. 

This is capable of improving the 

production by producing desired surface 

quality in a lesser time with minimum 

cost. The following points may be 

concluded from the analysis of 

experimental data and the result in 

connection with multi-response 

optimization of CNC turning:  

• This work summarizes the application 

of PCA that makes the optimization 

problem little easier by reducing the 

number of variables selected for this 

research work based on their 

accountability proportion.  

• This research work defines the 

application of Taguchi’s orthogonal 

array combined with PCA and TOPSIS 
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to optimize the multi-objective 

performance characteristics of surface 

roughness (Ra, Rz), MRR and MT of 

nylon 6 material.   

• The results obtained by ANOVA for 

closeness coefficient (Ci
+) shows that 

the parameter FD is the dominant 

parameter that affects the responses 

most with the percentage contribution 

of 40.30%, while the changes in the 

range of TS are moderate with the 

percentage contribution 25.56%, and 

DOC has very little effect on 

performance characteristics with the 

percentage contribution of 5.08%.  

• The affectability of the applied 

methodologies was further tested by 

confirmation test. Based on this, it was 

found that the closeness coefficient 

(Ci
+) for performance characteristics is 

improved by 0.1303 by using this 

method.  

• The optimal setting of process 

parameters was found to be TS = 1800 

rpm, FR = 0.07 mm/rev and DOC = 

0.40 mm. The predicted value of Ci
+ 

was found to be 0.6160.  

• The integrated approach of PCA with 

TOPSIS has been found very effective 

and useful for solving the multi-

response optimization.  
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