Open Access Open Access  Restricted Access Subscription or Fee Access

LATTICE-BASED CELLULAR STRUCTURE DESIGN STRATEGY

Amit Bhumarker, Abhishek Singh

Abstract


This research article has examined the objective of investigating the design processes or
approach for CAD modeling using open-source 3D modeling and graphics tools. This
research focuses on CAD modeling and the numerous challenges and concerns associated
with developing micro-lattice structures for the metal additive manufacturing process using
DFAM guidelines. These structures have been built for metal AM employing 3D-periodic
regular and FGLSs (homogenous and heterogeneous) with varied unit-cell types and sizes.
Another purpose of this research is to create and characterize mesoscale lattice-based and
TPMS-based cellular structures.


Keywords


Micro-Lattice Structure, Additive Manufacturing, CAD Modeling, Unit Cell, TPMS.

Full Text:

PDF

References


Deshpande VS, Fleck NA, Ashby MF. Effective properties of the octet-truss lattice

material. Journal of the Mechanics and Physics of Solids. 2001; 49(8):1747-1769.

https://doi.org/doi:10.1016/S0022-5096(01)00010-2

Hučko B, Faria L. Material model of metallic cellular solids. Computers and

Structures. 1997; 62(6):1049-1057.https://doi.org/doi:10.1016/S0045-7949(96)00310-

Niinomi M. Recent metallic materials for biomedical applications. Metallurgical and

Materials Transactions A. 2002; 33(3):477–486. https://doi.org/doi:10.1007/s11661-

-0109-2

Sypeck DJ. Cellular truss core sandwich structures. Applied Composite Materials.

; 12(3-4):229-246. https://doi.org/doi:10.1007/s10443-005-1129-z

Wadley H. Cellular metals manufacturing. Advanced Engineering Materials.

;4(10):726-733.https://doi.org/doi:10.1002/1527-

(20021014)4:10<726::AID-ADEM726>3.0.CO;2-Y

Wadley H, Fleck NA, Evans AG. Fabrication and structural performance of periodic

cellular metal sandwich structures. Composites Science and Technology. 2003;

(16):2331-2343. https://doi.org/doi:10.1016/S0266-3538(03)00266-5

Zok FW, Rathbun HJ, Wei Z, et al. design of metallic textile core sandwich panels.

International Journal of Solids and Structures. 2003;40(21):5707-5722.

https://doi.org/doi:10.1016/S0020-7683(03)00375-5

Duda T, Raghavan LV. 3D Metal Printing Technology. IFAC- PapersOnLine. 2016;

(29):103-110. https://doi.org/doi:10.1016/j.ifacol.2016.11.111

Li Y, Yang C, Zhao H, et al. New developments of ti-based alloys for biomedical

applications. Materials. 2014;7(3):1709-1800. https://doi.org/doi:10.3390/ma7031709

Athanker P, Singh AK. Elastic and elasto-plastic analysis of Ti6Al4V micro-lattice

structures under compressive loads. Mathematics and Mechanics of Solids. 2020;

(4):591-615. https://doi.org/doi:10.1177/1081286520959809

Garciandia LE. Characterization of Rapid Prototyped Ti6Al4V Bone Scaffolds by the

Combined Use of Micro-CT and in Situ Loading. Universidad Carlos III de Madrid;

Hicks A, Doak H, Stucker B. Effects of Powder Variation on the Microstructure and

Tensile Strength of Ti6Al4V Parts Fabricated by Selective Laser Melting. 25th

Annual International Solid Freeform Fabrication Symposium &#65533; An Additive

Manufacturing Conference, Published online 2014:470-483.

Kadkhodapour J, Montazerian H, Darabi AC, et al. Failure mechanisms of additively

manufactured porous biomaterials: Effects of porosity and type of unit cell. Journal of

the Mechanical Behavior of Biomedical Materials. 2015; 50:180-191.

https://doi.org/doi:10.1016/j.jmbbm.2015.06.012

Li X, Wang C, Zhang W, et al. fabrication and characterization of porous Ti6Al4V

parts for biomedical applications using electron beam melting process. Materials

Letters. 2009; 63(3-4):403-405. https://doi.org/doi:10.1016/j.matlet.2008.10.065

Li X, Feng YF, Wang CT, et al. Evaluation of Biological Properties of Electron

Beam Melted Ti6Al4V Implant with Biomimetic Coating in Vitro and In Vivo. PLoS

ONE. 2012;7(12):1-12. https://doi.org/doi:10.1371/journal.pone.0052049

Roy S, Panda D, Khutia N, et al. Pore geometry optimization of titanium (Ti6Al4V)

alloy for its application in the fabrication of customized hip implants. International

Journal of Biomaterials. 2014; 2014:1-12. https://doi.org/doi:10.1155/2014/313975

Weißmann V, Bader R, Hansmann H, et al. Influence of the structural orientation on

the mechanical properties of selective laser melted Ti6Al4V open-porous scaffolds.

Materials and Design. 2016; 95:188-197.

https://doi.org/doi:10.1016/j.matdes.2016.01.095

Tang Y, Kurtz A, Zhao Y. Bidirectional Evolutionary Structural Optimization

(BESO) based design method for lattice structure to be fabricated by additive

manufacturing. CAD Computer Aided Design. 2015; 69:91-101.

https://doi.org/doi:10.1016/j.cad.2015.06.001




DOI: https://doi.org/10.37628/ijmd.v8i2.1545

Refbacks

  • There are currently no refbacks.