Open Access Open Access  Restricted Access Subscription or Fee Access

Dissimilar Metals Welding Concepts

Abdullahi Abdulraheem

Abstract


Techniques for welding lightweight dissimilar materials, particularly metals are becoming increasingly important in the manufacturing of hybrid structures and components for engineering applications. The recent drive towards lightweight construction in the aerospace and automotive industries has led to increased exploitation of dissimilar materials welding with the aim of achieving specifically optimized versatility. In this paper, dissimilar metal welding is explore in more depth, looking at the process, challenges and factors to be consider, residual stresses in dissimilar metals weld, welding of dissimilar metals with different strength levels, why do we have to join or weld dissimilar metals and it is application, as well as weld-ability of metals and alloys are presented.


Keywords


Concept, dissimilar, metal, welding

Full Text:

PDF

References


Messler RW. The challenges for joining to keep pace with Advanced materials and designs. Mater Des. 1995;16(5):261–9. doi: 10.1016/0261–3069(96)00004–0.

Phanikumar G, Dutta P, Chattopadhyay K. Computational

Modeling of Cu-Ni dissimilar couple. Sci Technol Weld Join. 2005;10(2):158–66.

Ottino JM. The kinematics of mixing: stretching, chaos and transport (Cambridge texts in applied mathematics). London: Cambridge University Press; 1989.

Dutta P, Chevray R. Inertial effects in chaotic mixing with diffusion. J Fluid Mech. 1995;285(1):1–16. doi: 10.1017/S0022112095000437.

Arghode VK, Kumar A, Sundarraj S, Dutta P. Computational modelling of GMAW process for joining dissimilar aluminum alloys. Numer Heat Transf A. 2008;53(4):432–55. doi: 10.1080/10407780701632585.

Zacharia T, David SA, Vitek JM, Debroy T. Weld pool development during GTA and laser beam welding of type 304 stainless steel, Part II—experimental correlation. Weld. Res. Suppl., 1989, 510s-9s.

Paul A, Deb Roy T. Metall Trans B. 1988;19B:851–8.

Chan C, Mazumder J, Chen MM: Metall. Trans. A. Joining of dissimilar metals. Sci Technol Weld Joining 2011. 1984, 15A;16(4316):2175–84.Phanikumar et al. (c) IOM Communications Ltd.

Wang Y, Tsai HL. Effects of surface active elements on weld pool fluid flow and weld penetration in gas metal arc welding. Metall Mater Trans B. 2001;32(3):501–15. doi: 10.1007/s11663–001–0035–5.

Brent AD, Voller VR, Reid KJ. Enthalpy-porosity technique for modeling convection-diffusion phase change: application to the melting of a pure metal. Numer Heat Transf. 1988;13(3):297–318. doi: 10.1080/10407788808913615.

Phanikumar G, Dutta P, Chattopadhyay K. Computational modeling of laser welding of Cu-Ni dissimilar couple. Metall Mater Trans B. 2004;35:339–50.

Phanikumar G. Experimental and computational studies on laser processing of dissimilar metals [PhD thesis]. Bangalore, India: Indian Institute of Science; 2002.

Hirt CW, Nichols BD. Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys. 1981;39(1):201–25. doi: 10.1016/0021–9991(81)90145–5.

Chung FK, Wei PS. Mass, momentum and energy transport in a molten pool when welding dissimilar metals. J Heat Transf Trans ASME. 1999;121(2):451–61. doi: 10.1115/1.2825999.

Wei PS, Chung FK. Unsteady Marangoni flow in a moltenpool when welding dissimilar metals. Metall Mater Trans B. 2000;31B:1387–403.

Patankar SV. Numerical heat transfer and fluid flow. Washington, DC: Hemisphere Publication; 2000.

Sussman M, Smereka P, Osher S. A Level Set Approach for Computing

Solutions to Incompressible Two-Phase Flow. J Comput Phys. 1994;114(1):146–59. doi: 10.1006/jcph.1994.1155.

Tomashchuk I, Sallamand P, Jouvard JM, Grevey D. The simulation of morphology of dissimilar copper–steel electron beam welds using level set method. Comput Mater Sci. 2010;48(4):827–36. doi: 10.1016/j.commatsci.2010.03.042.

Brackbill JU, Kothe DB, Zemach C. A continuum method for modelling surface tension. J Comput Phys. 1992;100(2):335–54. doi: 10.1016/0021–9991(92)90240-Y.

Herfurth H, Witte R, Heineman S. Microjoining of dissimilar materials for life science applications. Proc SPIE Int Soc Opt Eng. 2003;5063:292–6.

Mahmood T, Mian A, Amin MR, Auner G, Witte R, Herfurth H, Newaz G. Finite element modeling of transmission laser microjoining process. J Mater Process Technol. 2007;186(1–3):37–44. doi: 10.1016/j.jmatprotec.2006.11.225.


Refbacks

  • There are currently no refbacks.