Open Access Open Access  Restricted Access Subscription or Fee Access

Evaluation of Various Numerical Methods in Large Scale FE Simulation Codes for 3D Crack Propagation

Ala Tabiei, Wenlong Zhang

Abstract


In this paper, four different numerical methods implemented in the large scale simulation code LS-DYNA are evaluated to determine their abilities and limitations in fracture problems especially 3-d crack propagation problems. Similar formulations are implemented in the code ABAQUS as well. These methods are: Finite Element Method (FEM), Discrete Element Method (DEM), Element Free Galerkin (EFG) method and Extended Finite Element Method (XFEM). Their methodologies are briefly described and several numerical simulations are carried out and compared with experiment results. In some examples, fracture parameters are evaluated and mesh sensitivity is studied. Their potentials and limitations are discussed.

Full Text:

PDF

References


Tabiei A, Wu j. Development of the dyna3d simulation code with automated farcture procedure for brick elements. 7th international LS-DYNA user conferecne 2004.

Aliabadi M. A new generation of boundary element methods in fracture mechanics. Int J Fract 1997;86:91-125.

Petit C, Vergne A, Zhang X. A comparative numerical review of cracked materials. Eng Fract Mech 1996;54:423-39.

Parker A. The mechanics of fracture and fatigue: an introduction. : Spon Press, 1981.

Sih GC. Strain-energy-density factor applied to mixed mode crack problems. Int J Fract 1974;10:305-21.

Gullerud AS, Dodds Jr. RH, Hampton RW, Dawicke DS. Three-dimensional modeling of ductile crack growth in thin sheet metals: computational aspects and validation. Eng Fract Mech 1999;63:347-74.

Wu EM. Application of fracture mechanics to anisotropic plates. Journal of Applied Mechanics 1967;34:967-74.

Irwin G. Relation of stresses near a crack to the crack extension force. 9th Cong.App.Mech., Brussels 1957.

Erdogan F, Sih G. On the crack extension in plates under plane loading and transverse shear. Journal of Fluids Engineering 1963;85:519-25.

Gerstle WH. Finite and boundary element modelling of crack propagation in two- and three-dimensions using interactive computer graphics. Dissertation Abstracts International Part B: Science and Engineering[DISS.ABST.INT.PT.B- SCI.& ENG.], 1986;47.

Mi Y. Three-dimensional analysis of crack growth. : Computational mechanics, 1996.

Cundall PA, Strack OD. A discrete numerical model for granular assemblies. Geotechnique 1979;29:47-65.

Donzé FV, Richefeu V, Magnier S. Advances in discrete element method applied to soil, rock and concrete mechanics. State of the art of geotechnical engineering.Electronic Journal of Geotechnical Engineering 2009;44:31.

Jing L, Stephansson O. Fundamentals of Discrete Element Methods for Rock Engineering: Theory and Applications: Theory and Applications. : Elsevier, 2007.

Jing L, Stephansson O. Fundamentals of Discrete Element Methods for Rock Engineering: Theory and Applications: Theory and Applications. : Elsevier, 2007.

Tavarez FA, Plesha ME. Discrete element method for modelling solid and particulate materials. Int J Numer Methods Eng 2007;70:379-404.

Gullerud AS, Gao X, Dodds Jr RH, Haj-Ali R. Simulation of ductile crack growth using computational cells: numerical aspects. Eng Fract Mech 2000;66:65-92.

Zubelewicz A, Bazant ZP. Interface element modeling of fracture in aggregate composites. J Eng Mech 1987;113:1619-30.

Hedjazi L, Martin CL, Guessasma S, Della Valle G, Dendievel R. Application of the Discrete Element Method to crack propagation and crack branching in a vitreous dense biopolymer material. Int J Solids Structures 2012;49:1893-9.

Masuya H, Kajikawa Y, Nakata Y. Application of the distinct element method to the analysis of the concrete members under impact. Nucl Eng Des 1994;150:367-77.

Brara A, Camborde F, Klepaczko J, Mariotti C. Experimental and numerical study of concrete at high strain rates in tension. Mech Mater 2001;33:33-45.

Hazzard JF, Young RP, Maxwell S. Micromechanical modeling of cracking and failure in brittle rocks. Journal of Geophysical Research: Solid Earth (1978–2012) 2000;105:16683-97.

Wang Y, Mora P. Macroscopic elastic properties of regular lattices. J Mech Phys Solids 2008;56:3459-74.

Camones LAM, do Amaral Vargas E, de Figueiredo RP, Velloso RQ. Application of the discrete element method for modeling of rock crack propagation and coalescence in the step-path failure mechanism. Eng Geol 2013;153:80-94.

Tavarez FA, Plesha ME. Discrete element method for modelling solid and particulate materials. Int J Numer Methods Eng 2007;70:379-404.

Camborde F, Mariotti C, Donzé F. Numerical study of rock and concrete behaviour by discrete element modelling. Comput Geotech 2000;27:225-47.

Kim H, Buttlar WG. Discrete fracture modeling of asphalt concrete. Int J Solids Structures 2009;46:2593-604.

Gdoutos EE. Strain energy density failure criterion: mixed-mode crack growth. In: Anonymous Fracture Mechanics: Springer; 1993, p. 195-238.

Jensen A, Kirk F, Laird G. Improving the Precision of Discrete Element Simulations through Calibration Models. 13th International LS-DYNA Users Conference 2014.

Belytschko T, Lu YY, Gu L. Element‐free Galerkin methods. Int J Numer Methods Eng 1994;37:229-56.

Lu Y, Belytschko T, Gu L. A new implementation of the element free Galerkin method. Comput Methods Appl Mech Eng 1994;113:397-414.

Belytschko T, Gu L, Lu Y. Fracture and crack growth by element free Galerkin methods. Modell Simul Mater Sci Eng 1994;2:519.

Belytschko T, Lu Y, Gu L, Tabbara M. Element-free Galerkin methods for static and dynamic fracture. Int J Solids Structures 1995;32:2547-70.

Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P. Meshless methods: an overview and recent developments. Comput Methods Appl Mech Eng 1996;139:3-47.

Fleming M, Chu Y, Moran B, Belytschko T, Lu Y, Gu L. Enriched element-free Galerkin methods for crack tip fields. Int J Numer Methods Eng 1997;40:1483-504.

Belytschko T, Organ D, Krongauz Y. A coupled finite element-element-free Galerkin method. Comput Mech 1995;17:186-95.

Ponthot J, Belytschko T. Arbitrary Lagrangian-Eulerian formulation for element-free Galerkin method. Comput Methods Appl Mech Eng 1998;152:19-46.

Rabczuk T, Belytschko T. Cracking particles: a simplified meshfree method for arbitrary evolving cracks. Int J Numer Methods Eng 2004;61:2316-43.

Needleman A. A continuum model for void nucleation by inclusion debonding. Journal of applied mechanics 1987;54:525-31.

Klein PA, Foulk JW, Chen EP, Wimmer SA, Gao HJ. Physics-based modeling of brittle fracture: cohesive formulations and the application of meshfree methods. Theor Appl Fract Mech 2001;37:99-166.

Guo Y, Wu C. XFEM and EFG Cohesive Fracture Analysis for Brittle and Semi-Brittle Materials.

Tvergaard V, Hutchinson JW. The influence of plasticity on mixed mode interface toughness. J Mech Phys Solids 1993;41:1119-35.

Hallquist JO. LS-DYNA keyword user’s manual. Livermore Software Technology Corporation 2007;970.

Nayroles B, Touzot G, Villon P. Generalizing the finite element method: diffuse approximation and diffuse elements. Comput Mech 1992;10:307-18.

Abdelaziz Y, Hamouine A. A survey of the extended finite element. Comput Struct 2008;86:1141-51.

Fries T, Belytschko T. The extended/generalized finite element method: an overview of the method and its applications. Int J Numer Methods Eng 2010;84:253-304.

Dolbow J, Belytschko T. A finite element method for crack growth without remeshing. Int.J.Numer.Meth.Engng 1999;46:131-50.

Belytschko T. Elastic crack growth in finite elements with minimal remeshing.

Melenk JM, Babuška I. The partition of unity finite element method: basic theory and applications. Comput Methods Appl Mech Eng 1996;139:289-314.

Babuska I, Melenk JM. The partition of unity finite element method 1995.

Osher S, Fedkiw RP. Level set methods: an overview and some recent results. Journal of Computational physics 2001;169:463-502.

Sukumar N, Moës N, Moran B, Belytschko T. Extended finite element method for three‐dimensional crack modelling. Int J Numer Methods Eng 2000;48:1549-70.

Chessa J, Wang H, Belytschko T. On the construction of blending elements for local partition of unity enriched finite elements. Int J Numer Methods Eng 2003;57:1015-38.

Fries T. A corrected XFEM approximation without problems in blending elements. Int J Numer Methods Eng 2008;75:503-32.

Belytschko T, Moës N, Usui S, Parimi C. Arbitrary discontinuities in finite elements. Int J Numer Methods Eng 2001;50:993-1013.

ASTM. ASTM E8: Standard Test Methods for Tension Testing of Metallic Materials. In: Anonymous ; 2012.

Dawicke D, Newman J. Residual strength predictions for multiple site damage cracking using a three-dimensional finite element analysis and a CTOA criterion. Fatigue and fracture mechanics: 29 th 1999:815-29.

Marzougui D. Implementation of a fracture failure model to a 3d non-linear dynamic finite element code (DYNA3D). 1998.

Broek D. Elementary engineering fracture mechanics. : Springer Science & Business Media, 1982.

Tada H, Paris P, Irwin G. The analysis of cracks handbook. : New York: ASME Press, 2000.

Hedjazi L, Guessasma S, Della Valle G, Benseddiq N. How cracks propagate in a vitreous dense biopolymer material. Eng Fract Mech 2011;78:1328-40.

Van de Velde K, Kiekens P. Biopolymers: overview of several properties and consequences on their applications. Polym Test 2002;21:433-42.

Movchan AB, Movchan NV. Mathematical modelling of solids with nonregular boundaries. : CRC Press, 1995.

Haeri H, Shahriar K, FatehiMarji M, Moarefvand P. On the crack propagation analysis of rock like Brazilian disc specimens containing cracks under compressive line loading. Latin American Journal of Solids and Structures 2014;11:1400-16.




DOI: https://doi.org/10.37628/jsmfe.v2i2.204

Refbacks

  • There are currently no refbacks.