Review of experimental fracture toughness (KIC) of aluminium alloy and aluminium MMCs

Saleemsab Doddamani, Mohamed Kaleemulla

Abstract


This paper gives technical review of different methods of fracture toughness testing, experimental evaluation in reference to both the Linear elastic fracture mechanics (LEFM) and the Elastic–plastic fracture mechanics (EPFM). Fracture toughness using Single Edge Notch Bend (SENB) as per ASTM E-1820 and Compact Tension (CT) Specimens as per ASTM-E399 were widely used where as indentation techniques as per ASTM E1820-09e1, Circumferential Notched Tensile (CNT), Circumferential Cracked Round Bar (CCRB) are on the other hand getting popular for their ease. The material chosen for this study is restricted to aluminium matrix, particulate reinforced composites especially Silicon Carbide. The fracture toughness testing methods considered in this paper are Single Edge Notch Bend (SENB), Circumferential Cracked Round Bar (CCRB), Circumferential Notched Tensile (CNT), Vickers’s indentation techniques. For the particulate composites, results of the above said testing methods are presented and discussed. From the literature, fracture toughness of aluminium alloy vary from 14 to 28 MPa m [45] and for the aluminium matrix particulate composite fracture toughness was found to be less than 28 MPa m for various fracture toughness test methods.

Full Text:

PDF

References


http://en.wikipedia.org/wiki/Fracture_toughness, 25-10-2014, 10:10am.

ASM International. ASM Handbook of Composites. 2001; 21.

Neelima Devi C., Mahesh V., Selvaraj N. Mechanical Characterization of Al/SiC Composite. International Journal of Applied Engineering Research (IJAER). Dindigul. 2011; 1(4).

Logsdon W.A., Liaw P.K. Tensile, Fracture Toughness and Fatigue Crack Growth Rate Properties of Silicon Carbide Whisker and Particulate Reinforced Aluminum Metal Matrix Composites. Pergamon Journals Ltd, Eng. Frac. Mech. 1986; 24(5): 137–51p.

Manigandan K., Srivatsan T.S., Quick T. Influence of Silicon Carbide Particulates on Tensile Fracture Behavior of an Aluminum Alloy. Mater. Sci. Eng. 2012; A534: 711–5p.

Yusuf Sahin. Abrasive Wear Behaviour of SiC/2014 Aluminium Composite. Tribol. Int. 2010; 43: 939–43p.

Baradeswaran A., Elayaperumal A. Effect of Graphite Content on Tribological behaviour of Aluminium Alloy-Graphite Composite. Eur. J. Sci. Res. ISSN 1450-216X. 2011; 53(2) 163–70p.

Ranjbaran Mohammad M. Low Toughness Fracture in Al 7191-20% SiCp Aluminum Matrix Composite. Eur. J. Sci. Res. ISSN 1450-216X. 2010; 41(2): 261–72p.

Vikram Singh, Prasad R.C. Tensile and Fracture Behavior of 6061 Al-Sicp Metal Matrix Composites. International Symposium of Research Students on Materials Science and Engineering. Dec 20–22, 2004.

Sharma M.M., Ziemian C.W., Eden T.J. Fatigue Behavior of SiC Particulate Reinforced Spray-Formed 7xxx Series Al-Alloys. Mater. Des. 2011; 32: 4304–9p.

Lee Eun E. Fatigue Behavior of Silicon Carbide Whisker/ Aluminum Composite. Naval Air Development Center (Code 606), Warminster, PA 18974-5000. Oct 1988.

Davidson D.L. Micromechanisms of Fatigue Crack Growth and Fracture Toughness in Metal Matrix Composites. Office of Naval Research, 800 North Quincy St. Arlington, VA 22217. Jan 1989.

Uematsu Y., Tokaji K., Kawamura M. Fatigue Behavior of SiC-Particulate-Reinforced Aluminium Alloy Composites with Different Particle Sizes at Elevated Temperatures. Compos. Sci. Technol. 2008; 68: 2785–91p.

Yuan R., Kruzic J.J., Zhang X.F., et al. Ambient to High-Temperature Fracture Toughness and Cyclic Fatigue Behavior in Al-Containing Silicon Carbide Ceramics. Science Direct, Acta Materialia. 2003; 51: 6477–91p.

Mason J.J., Ritchie R.O. Fatigue Crack Growth Resistance in SiC Particulate and Whisker Reinforced P:M 2124 Aluminum Matrix Composites. Mater. Sci. Eng. 1997; A231: 170–82p.

Chawla N., Ganesh V.V. Fatigue Crack Growth of SiC Particle Reinforced Metal Matrix Composites. Int. J. Fatigue. 2010; 32: 856–63p.

Newman Jr J.C. Advances in Fatigue and Fracture Mechanics Analyses for Aircraft Structures. Mechanics and Durability Branch, NASA Langley Research Center, Hampton, VA, USA 23681.

Yury Flom, Parker B.H., Chu H.P. Fracture Toughness of SiC/Al Metal Matrix Composite. NASA Technical Memorandum 100745. Aug 1989.

Huang J., Spowart J.E., Jones J.W. The Role of Microstructural Variability on the Very High-Cycle Fatigue Behavior of Discontinuously-Reinforced Aluminum Metal Matrix Composites Using Ultrasonic Fatigue. Int. J. Fatigue. 2010; 32: 1243–54p.

Li Xue., Yin Zhi-min, Nie Bo, et al. High Cycle Fatigue and Fracture Behavior of 2124-T851 Aluminum Alloy. Trans. Nonferrous Met. Soc. China. 2007; 17: 295–9p.

Shivaraja H.B., Praveen Kumar B.S. Experimental Determination and Analysis of Fracture Toughness of MMC. International Journal of Science and Research (IJSR). Jul 2014; 3(7).

Ajit Bhandakkar, Prasad R.C., Sastry Shankar M.L. Elastic Plastic Fracture Toughness of Aluminium Alloy AA6061 Fly Ash Composites. Advanced Materials Letters. 2014.

Alaneme K.K., Aluko A.O. Fracture Toughness (K1C) and Tensile Properties of As-Cast and Age-Hardened Aluminium (6063)–Silicon Carbide Particulate Composites. Scientia Iranica A. 2012; 19(4): 992–6p.

Barekar N., Tzamtzis S., Dhindaw B.K., et al. Processing of Aluminum-Graphite Particulate Metal Matrix Composites by Advanced Shear Technology. J. Mater. Eng. Perform, ASM International. Feb 2009.

Manoj Singla, Deepak Dwivedi D., Lakhvir Singh, et al. Development of Aluminium Based Silicon Carbide Particulate Metal Matrix Composite. Journal of Minerals & Materials Characterization & Engineering. 2009; 8(6): 455–67p.

Dunia Abdul Saheb. Aluminum Silicon Carbide and Aluminum Graphite Particulate Composites. ARPN J. Eng. Appl. Sci. Oct 2011; 6(10).

Christian Nielsen, Amirkhizi Alireza V., Sia Nemat-Nasser. An Empirical Model for Estimating Fracture Toughness Using the DCDC Geometry. Int J Fract. Springer. 2014; 188: 113–8p.

Hiroaki Kurishita, Takuya Yamamoto, Takuya Nagasaka, et al. Fracture Toughness of JLF-1 by Miniaturized 3-Point Bend Specimens with 3.3–7.0 mm Thickness. The Japan Institute of Metals, Mater. T. 2004; 45(3): 936–41p.

Fenghua Zhou, Jean-Francois Molinari, Yulong Li. Three-Dimensional Numerical Simulations of Dynamic Fracture in Silicon Carbide Reinforced Aluminum. Eng. Fract. Mech. 2004; 71: 1357–78p.

Londe Neelakantha V., Jayaraju T, Sadananda Rao PR. Use of Round Bar Specimen in Fracture Toughness Test of Metallic Materials. International Journal of Engineering Science and Technology. 2010; 2(9): 4130–6p.

Vanian G.G., Hellier A.K., Zarrabi K., et al. Fracture Toughness Determination For Aluminium Alloy 2011-T6 Using Tensile Notched Round Bar (NRB) Test Pieces. Springer, Int J Fract. 2013; 181: 147–54p.

Kenneth Kanayo Alaneme. Fracture Toughness (K1C) Evaluation for Dual Phase Medium Carbon Low Alloy Steels Using Circumferential Notched Tensile (CNT) Specimens. Mater. Res. 2011; 14(2): 155–60p.

Nath S.K., Uttam Kr Das. Effect of Microstructure and Notches on the Fracture Toughness of Medium Carbon Steel. J. Nav. Archit. Mar. Eng. Jun 2006.

Marek Bľanda1, Ján Balko, Annamária Duszová, et al. Hardness and Indentation Fracture Toughness of Aluminasilicon Carbide Nanocomposites. Acta Metallurgica Slovaca Conference. 2013; 3: 270–5p.

Enrique Rocha-Rangel. Fracture Toughness Determinations by Means of Indentation Fracture. Nanocomposites with Unique Properties and Applications in Medicine and Industry. Aug 2011.

Fjodor Sergejev, Maksim Antonov. Comparative Study on Indentation Fracture Toughness Measurements of Cemented Carbides. Proc. Estonian Acad. Sci. Eng. 2006; 12(4): 388–98p.

Lidija Ćurković, Vera Rede, Krešimir Grilec, et al. Hardness and Fracture Toughness of Alumina Ceramics. 12 Conferences on Materials, Processes, Fabrication, and Wear, Vela Luka, 2007.

Kruzica J.J., Kimb D.K., Koesterc K.J., et al. Indentation Techniques for Evaluating the Fracture Toughness of Biomaterials and Hard Tissues. J. Mech. Behav. Biomed. Mater. 2009; 2: 384–95p.

Kruzic Jamie J., Ritchie Robert O. Determining the Toughness of Ceramics from Vickers Indentations Using the Crack-Opening Displacements: An Experimental Study. J. Am. Ceram. Soc. 2003; 86(8): 1433–36p.

Ranjbaran Mohammad M. Experimental Investigation of Fracture Toughness in Al 356-SiCp Aluminium Matrix Composite. American Journal of Scientific and Industrial Research (AJSIR). 2010; 1(3): 549–57p.

Standard Test Method for Measurement of Fracture Toughness. ASM International. E 1820–01.

Xian-Kui Zhu, Joyce James A. Review of Fracture Toughness (G, K, J, CTOD, CTOA) Testing and Standardization. Eng. Fract. Mech. 2012; 85: 1–46p.

Wei T., Carr D.G., Budzakoska E., et al. Assessment of the Fracture Toughness of 6061 Aluminium by the Small Punch Test and Finite Element Analysis. Institute of Materials Engineering Australasia Ltd, Mater. Forum. 2006; 30.

Weisbrod G., Rittel D. A Method for Dynamic Fracture Toughness Determination Using Short Beams. Kluwer Academic Publishers, Int. J. Fracture. 2000; 104: 89–103p.

Phillips Agboola O., Filiz Sarioglu, Cafer Kızılors. Validation of Circumferential Notched Tensile (CNT) Test Procedure for KISCC Determination. Proceedings of the World Congress on Engineering, London, U.K. Jul 3–5, 2013; III.


Refbacks